
Notizie
Anno accademico 2022-2023 le lezioni si svolgeranno il Martedi ore 16-18 Aula 3 e Giovedi ore 16-18 Aula 9.
Orario ricevimento: libero previa comunicazione via email per accordarsi sull'orario.
Descrizione del corso:
Per comprendere un fenomeno fisico che si manifesta nel mondo intorno a noi bisogna prima essere capaci di misurarlo e successivamente avere le capacità per analizzare ed interpretare la misurazione effettuata. Negli ultimi decenni il continuo progresso tecnologico ha permesso di effettuare misurazioni dei fenomeni fisici che ci circondano ed impattano la nostra vita quotidiana (come terremoti, frane e molto altro) avviando un processo di comprensione del processo fisico. Questo insegnamento è volto all’introduzione degli strumenti di misurazione più comuni utilizzati nelle geoscienze. I diversi metodi di misurazione verranno integrati con l’introduzione di tecniche per l’analisi del dato e la successiva interpretazione. Durante il corso ogni studente avrà la possibilità di sviluppare il proprio programma di analisi dati mediante il linguaggio di programmazione Python, del quale verranno poste le basi durante il primo periodo dell’insegnamento. Verranno effettuate alcune visite ad integrazione dei concetti presentati durante le lezioni presso il labratorio di Rock Mechanics and Earthquake Physics nel Dipartimento di Scienze della Terra.
Il corso verrà suddiviso in 4 moduli:
Modulo 1
Introduzione storica dell’evoluzione dei vari tipi di misurazione e data management.
Segnale analogico e digitale (esercizi con Arduino microcontroller)
Analisi di serie temporali: cenni di calcolo numerico, analisi di Fourier
Introduzione a Python (con esercitazioni)
Modulo 2 Misurare spostamenti e deformazione (dalla scala del micron al movimento delle placche)
- Direct Current Displacement Transducers (DCDT) – Linear Variable Differential Transformer (LVDT)
Questi sono strumenti per misurare spostamenti micrometrici. Faremo una visita al laboratorio di meccanica delle rocce per vederne il funzionamento ed acquisire dati da analizzare in classe.
- GPS (Ground Positioning Systems)
Sono strumenti comunemente utilizzati per misurare spostamenti che vanno dal movimento delle placche al piccolo spostamento di un ammasso roccioso franoso. Analizzeremo una serie temporale dei GPS durante il terremoto di Norcia 30 Ottobre 2016 Mw 6.5 per poterne ricavare lo spostamento co-sismico durante il terremoto.
- Misuratori di deformazione (strain meter)
Generalmente posti all’interno di pozzi scavati nel terreno questi strumenti sono utilizzati comunemente nel monitoraggio di frane e deformazione associata al movimento intersismico di zone di faglia. Vedremo l’esempio di un nuovo array che verrà installato nell’Appennino centrale (Progetto STAR).
- inSAR (Interferometric synthetic aperture radar)
Generalmente usato per misurare la deformazione della crosta terrestre. Come applicazioni vede lo studio dello spostamento cosismico durante i terremoti, subsidenza in campi di coltivazione di idrocarburi, movimento di frane etc. Affronteremo la teoria di base del funzionamento dello strumento.
Modulo 3 Misurare forze e pressioni
- Strain gauges
Strumento base per misurare la deformazione di materiali quali rocce ma anche cementi ed acciaio. Vedremo in dettaglio il funzionamento e le varie applicazioni. Costruiremo in classe un circuito che ci permetterà di misurare la deformazione di un corpo roccioso, registreremo i dati e li analizzeremo.
- Cella di carico
Generalmente utilizzato per misurare la pressione applicata tra due corpi. Ne vedremo l’utilizzo ed il funzionamento durante esperimenti di laboratorio ed analizzeremo i dati derivanti da un esperimento.
- Pressure gages
Generalmente utilizzati per misurare la pressione di un fluido. Sono comunemente usati nel monitoraggio di acquiferi. Ne vedremo il funzionamento e analizzeremo dei dati derivanti da misure reali.
Modulo 4 Ground Motion
- Sismometri
Lo strumento per eccellenza nelle geoscienze che ci ha permesso di conoscere l’interno della terra ed i processi dinamici che ci circondano. Ne vedremo il funzionamento ed analizzeremo i dati provenienti da diversi terremoti.
- Accelerometri
Questo strumento ci permette di misurare movimenti e vibrazioni di un corpo sottoposto a sollecitazioni esterne. Sono comunemente usati per misurare il passaggio di onde elastiche vicino alle sorgenti sismiche. Ne vedremo il funzionamento e analizzeremo dei dati reali.
- Piezo electric transducers
Generalmente utilizzati per misurare vibrazioni in maniera molto accurate, dette anche emission acustiche. Comunemente usati in esperimenti di laboratorio ma anche nel monitoraggio di strutture come ponti etc.
Orari di ricevimento
Su richiesta inviando una email a marco.scuderi@uniroma1.it
Curriculum
- **Education**
**2014 Ph.D.in Rock Physics**
at the Pennsylvania State University under the supervision of Prof. Chris Marone. I was awarded of my Ph.D. on 12th of June 2014 for a thesis entitled: “Mechanical properties of the
seismogenic zone”.
**2007 -** **2009 Master of Science**
in Geological Resources and Hazard at the University of Perugia under the supervision of Prof. C. Collettini and co-supervision of Dr. A. Niemeijer (Utrecht University). Thesis entitled: “Frictional properties and slip stability of active faults within carbonate–evaporite sequences: The role of dolomite and anhydrite” with the final score of 110/110 and honors.
**2004 -** **2007 Bachelor of Science**
in Geological Sciences at the University of Perugia with the final grade of 102/110.
- **Research/Professional Experience:**
**2022-Present** Assiciate Professor in Geophysics, La Sapienza University of Rome
**2019-2022** Tenure-Track assistant professor (RTDB) in geophysics (04/A4 SSD GEO/10), La Sapienza University of Rome
**2017 – 2019** Post-Doctoral research fellow sponsored by TOTAL with a project entitled “Fault zone permeability and leakage” with the supervision of Dr. C. Wibberley (TOTAL) and Prof. C. Collettini (La Sapienza University of Rome).
**2015 – 2017** EUHorizon 2020 Marie Sklodowska-Curie Actions Individual Fellow, grant No. 656676 FEAT (The role of **F**luid pressure in **EA**rthquake **T**riggering). , La Sapienza University of Rome
**2014 – 2015** Post-Doctoral research fellow at La Sapienza University of Rome under the supervision of Prof. Cristiano Collettini.
- **Grants and Fellowships:**
**2023** PRIN-Giovani RU-Sapienza (PI Prof. Broccardo Uni Trento) “PREdicting Induced Seismic EVENTs with Physics-Informed Machine Learning (PREVENT)” (35k euros per sapienza - totale progetto 278k euros)
**2022** ERC Starting Grant HYQUAKE “Hydromechanical coupling in tectonic faults and the origin of aseismic slip, quasi-dynamic transients and earthquake rupture” GA No. 101040600 (PI 1.5M euros)
**2022** **Fault-parallel permeability and response to overpressure: implications for leakage and stability** - TOTAL research funding in collaboration with Dr. Chris Wibberley (co-PI 150k euros)
**2021** Laboratory characterization of fault slip behavior upon fluid pressurization in the low permeability Shales at Mont Terri with acoustic imaging and hydromechanical measurements, Mon Terri Underground Laboratory Consorzium e Servizio Geologico Svizzero (PI 15k)
**2021** Fault-parallel permeability and response to overpressure: implications for leakage and stability - TOTAL research funding in collaboration with Dr. Chris Wibberley (co-PI 110k euros)
**2021** FAST - FAult Stability_2 ENI research founding in collaboration with the geomechanical research group (co-PI 90k euros)
**2020** Laboratory characterization of fault slip behavior upon fluid pressurization in the low permeability Shales at Mont Terri with acoustic imaging and hydromechanical measurements, Mon Terri Underground Laboratory Consorzium e Servizio Geologico Svizzero (PI 15k)
**2017** “Fault zone permeability and structure” TOTAL research funding in collaboration with Dr. Chris Wibberley (co-PI 90k euros)
**2017** “FAST, Fault Stability” ENI research founding in collaboration with the geomechanical research group (co-PI 90k euros)
**2015** European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Individual Fellow. Grant agreement No. 656676 “The role of **F**luid pressure in **EA**rthquake **T**riggering” (FEAT) (180k euros)
- **Prizes and Awards:**
**2022** National scientific habilitation for the position of full professor (04/A4 SSD GEO10).
2020 MRP (Mineral and Rock Physics) Early Career Award, American Geophysical Union (AGU)
**2018** EMRP (Earth Magnetism and Rock Physics) Division Outstanding Early Career Scientist Award of the European Geosciences Union (EGU).
**2018** National scientific habilitation for the position of associate professor 04/A4 SSD GEO10.
- **Teaching Experience:**
2019 - present co-teacher of the course Rock Physics LM Geologia di Esplorazione (3 CFU)
2019 - present Sistemi di Misura e elaborazione dati nell Geoscienze LM Geologia di Esplorazione (6 CFU)
2019 - present co-teacher of the course Fisica della Terra solida LM Geologia di esplorazione (3 CFU)
**2013-2014** Teaching Assistant / Laboratory Instructor for the course “Physical Processes in Geology” (GEOSC203), Pennsylvania State University (USA).
- **Advising:**
2023 - Present Post-Doc Giacomo Mastella
2023 - present PhD Michele Mauro
2023 - present PhD Michele De Solda
2022 - Present Post-Doc Nathalie Casas
2022 - Present Post-Doc Pierre ROmanet
**2020 - Presen**t Supervisor of the Ph.D. thesis of Federico Pignalberi at the Sapienza University of Rome
**2019 – 2022** Supervisor of the Ph.D. thesis of Nico Bigaroni at the Sapienza University of Rome (post-doc at Manchester)
**2018** Member of the Ph.D. evaluation panel of Matijn Van Den Ende, Utrecht University
**2017 – 2020** Co-supervisor of the Ph.D. thesis of Roberta Ruggeri at the Sapienza University of Rome
**2017** co-advisor for the Master Thesis of Matteo Manzi entitled “Characterization of the mechanical properties along a carbonate-bearing landslide” that graduated with the final grade of 110/110 *cum laude*.
**2016** co-advisor for the Master Thesis of Marco Mercuri entitled “Experimental characterization of the semi-brittle behavior of calcite: insights from mechanical and acoustic data” that graduated with the final grade of 110/110 *cum laude*.
**2016** co-advisor of Bachelor Thesis of Giulia Felli entitled “Microstructural evolution of a laboratory fault during slow fault slip”.
**2016** co-advisor of Bachelor Thesis of Marika Fedele entitled “Slip characterization of an experimental fault under a wide range of boundary conditions”.
- **Training Courses:**
**2013** Scanning Electron Microscope (SEM) training course at the Pennsylvania State University.
**2012** ICDP, Continental Scientific Drilling, training course at the Geocenter KTB in Windischeschenbach, Germany. Fundamental of drilling technology, Cores and Cuttings sampling and analysis, Downhole logging basics, Applied downhole measurements, Seismic downhole measurements, Data management.
- **Membership of scientific societies:**
2011 – current Member, Research Network “*American Geophysical Union*” (AGU)
2014 – current Member, Research Network “*European Geoscience Union*” (EGU)
2015 – current Member of the Marie-Curie Alumni Association
- **Editorial Activity**
Reviewer for ISI Journals: Nature Geoscience, Nature Communication, Geology, Science Advances, EPSL, Geophysical Research Letters, Journal of Geophysical Research, Geophysical Journal International, Scientific Reports, Journal of Structural Geology, Pure and Applied Geophysics, Tectonophysics,
Reviewer for founding programs: National Science Foundation (USA), Swiss National Science Foundation, Department of Energy (USA)
Guest editor for the special volume on induced seismicity: Advances in Monitoring, Modeling and managing induced seismicity. Frontiers in earth science (2022)
- **Major collaborations**
- Frederic Cappa, Up-scaling of fluid induced earthquakes through hydromechanical modeling. University of Nice Sophia Antinopolis, Geoazur laboratory, France
- S. Barbot / M. Veduu. Modeling the spectrum of fault slip behavior. (University of Southern California)
- Federico Agliardi. Upscaling of landslide behavior from the lab scale to in-situ. University of Milan Bicocca, Italy
- C. Wibberley. Fault zone permeability and leakage in the geomechanics of reservoir. TOTAL, France.
- Luke Zoet, The effects of entrained debris on the basal sliding stability of a glacier, Iowa State University, USA
- Paul Johnson, Acceleration of acoustical emission precursor preceding failure in sheared granular material, Los Alamos National Laboratory, USA.
**Abstract of selected scientific meeting oral presentations:**
- **Invited talks**
2024 Keynote speaker at Leeds-Lyon tribology conference
2021 14th Euroconference on Rock Physics and Rock Mechanics Scuderi M.M. et al., Linking laboratory with in-situ observations to improve the understanding of fault slip behaviour during fluid pressurization.
2021 The physics of earthquake faulting: machine learning to illuminate earthquake precursor and predict laboratory earthquakes Scuderi M.M. et al., Fault zone structure, precursor to failure illuminate the mechanics of the full spectrum of slip behaviors.
2020 American Geophysical Union: Fall meeting Scuderi et al., Linking laboratory with in-situ observations to improve the understanding of fault slip behaviour during fluid pressurization.
2019 American Geophysical Union: Fall meeting Scuderi M.M. The spectrum of slip behaviors, from elasto-dynamic rupture to slow earthquakes, a laboratory perspective, special session “AGU Centennial”. San Francisco, CA USA.
**2019** American Geophysical Union: Fall meeting Scuderi M.M. and C. Collettini. Stress Triggering and the Mechanics of Fault Slip Behavior. San Francisco, CA USA.
**2019** European Geoscience Union (EGU). Scuderi M.M. Understanding Injection-Induced Seismicity and Aseismic Fault Slip Coupling Laboratory and In-Situ Experiments with Hydromechanical Models**.** Vienna, Austria.
**2019** 3rd Induced Seismicity Workshop. Scuderi M.M. Fluid injection and the mechanics of frictional stability of shale-bearing faults. Davos, Switzerland.
**2018** American Geophysical Union (AGU) general assembly. Scuderi M.M. The role of fabric and normal stress on the mechanics of slow-slip. Washington DC, USA.
**2018** European Seismological Commission (ESC). Fluid driven fault slip of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales. Valletta, Malta.
**2017** IAG-IASPEI. Scuderi et al., Laboratory observations of slow stick-slip: implications for slow earthquakes and the spectrum of fault slip behavior. Kobe, Japan.
- **Other oral communications**
**2018** European Geoscience Union (EGU) general assembly Scuderi M.M. Fluid driven fault slip of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales. Vienna, Austria.
**2017** School of earthquakes: nucleation, triggering, rupture and relations with aseismic processes. Scuderi et al., The effect of fluid injection on an experimental fault and its role on frictional stability and earthquake triggering. Cargese, France.
**2017** European Geoscience Union (EGU) General Assembly, Scuderi et al., Fluid-injection and the mechanics of frictional stability of shale-bearing faults. Vienna, Austria.
**2016** European Geoscience Union (EGU) General assembly, Scuderi et al., The role of fluid pressure in fault creep vs. frictional instability: insights from rock deformation experiments on carbonates. Vienna, Austria.
**2016** European Geoscience Union (EGU) General Assembly, Scuderi et al., Precursor to failure extend across the transition from slow to fast laboratory earthquakes. Vienna, Austria.
**2016** Italian Geological Society, Scuderi et al., The role of fluid pressure in fault creep vs. frictional instability: insights from rock deformation experiments on carbonates. Naples, Italy.
**2016** American Geophysical Union (AGU) Fall Meeting, Scuderi et al. The effect of fluid pressure on an experimental fault and its role on frictional stability and earthquake triggering. San Francisco, USA.
**2015** European Geoscience Union (EGU) General Assembly, Scuderi et al., Mechanical and acoustic signature of slow earthquakes on an experimental fault.
- **Organization of Session at international meeting:**
2022 EGU (European Geoscience Union) convener of the session Induced/triggered seismicity in geo-energy applications: monitoring, modeling, mitigation, and forecasting
2021 AGU (American Geophysical Union) convener of the session **Physical Properties of Earth Materials (PPEM): The long and the short of it.**
2021 EGU (European Geoscience Union) convener of the session Induced/triggered seismicity in geo-energy applications: monitoring, modeling, mitigation, and forecasting
2020 AGU (American Geophysical Union) convener of the session “Physical Properties of Earth Materials (PPEM): Using the Whole Toolbox to Understand Rock Deformation”
2020 EGU (European Geoscience Union) convener of the session “Earthquakes: from slow to fast, over multiple scales, from the field to the laboratory and models.
2020 EGU (European Geoscience Union) convener of the session “Induced/triggered seismicity in geo-energy applications: monitoring, mitigation and forecasting”.
2019 AGU (American Geophysical Union) convener of the session “Can fault healing control fault slip style and the seismic cycle?”
2019 EGU (European Geoscience Union) convener of the session “Earthquakes: from slow to fast, from the field to the laboratory and models”
2019 EGU (European Geoscience Union) convener of the session “Understanding fluid driven rupture, from natural earthquakes to reservoirs induced seismicity”
- **Public Dissemination: (to review)**
**2016** “Seismic slowdowns could warn of impeding earthquakes”. Article on the scientific magazine Smithsonian (link [here](https://www.smithsonianmag.com/science-nature/seismic-slowdowns-could-wa...)).
**2016** “A FEAT of earthquake research”. European Union portal under success stories (link [here](http://ec.europa.eu/research/infocentre/article_en.cfm?artid=42516)).