"Convicting the Innocent": Data and Materials

This library collection contains data and materials concerning the trials of the first 250 people exonerated by post-conviction DNA testing in the United States. This research collection was compiled in conjunction with a book by Brandon Garrett, "Convicting the Innocent: Where Criminal Prosecutions Go Wrong" (2011), reporting the results of a study of these materials. The research pages contain data, research appendices and resources arranged by subject:

- Confessions
- Eyewitness Misidentifications
- Forensics
- Jailhouse Informants
- Defense Case at Trial
- Judging Innocence Post-Conviction
- Exoneration

Videos Related to This Research (Innocence Project Website)

Eyewitness Misidentifications

- Discrepancy in description - 63% (100)
- Did not see face - 9% (15)
- Initially uncertain - 21% (34)
- Initial non-i.d. - 40% (64)
- Hypnotized - 3% (5)
- Suggestive remarks - 28% (44)
- Suggestive line-up - 34% (55)
- Show-up - 34% (55/160)
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003512
Figure 2. Proportion of false memories in the recognition test.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003512
Fig. 1. Experimental procedure and design. The misinformation procedure in Experiments 1 and 2 is illustrated in (a). After viewing two sets of photographs depicting events, participants read narratives that included misinformation about the events. Later, participants took a three-alternative forced-choice test of their memory for the photographs and a source test on which they indicated where they had acquired the information they used to answer each question. In Experiment 2 (b), participants arrived at the lab in the evening to perform the misinformation procedure. Some participants completed the encoding phase (viewing photos) of the procedure in the evening, and others completed it the following morning. Within each encoding condition, some participants remained awake overnight, and others were allowed to sleep for 8 hr.
Experiment 1 provided initial evidence that restricted sleep is associated with increased false memory. Participants who reported 5 or fewer hours of sleep the night before the experiment were more likely to report that they had witnessed a news event that they did not actually see, compared with rested participants. There was also a trend for these participants to incorporate more misleading information into their memory for visual materials.

In Experiment 2, the sleep-deprived group showed greater susceptibility to false memories relative to the rested group, but only when participants were sleep deprived during all three stages of the misinformation procedure.
Feeling sleepy? You may confess to a crime you didn’t commit.
The New Scientist article notes several cases in which a sleep-deprived suspect was later exonerated, including Damon Thibodeaux, who was wrongly imprisoned in Louisiana for 15 years. There's also Daniel Anderson of Chicago, who spent 25 years in prison for a sleep-deprived confession. Frank Sterling served more than 18 years in a New York prison after falsely confessing to raping and killing a 74-year-old woman in 1988. His confession came after 12 straight hours of interrogation. He tried to explain what he was going through to New York magazine in 2010: “They just wore me down... I was just so tired. Remember, I hadn’t had any sleep since about 2:30 Tuesday night... “It’s like, ‘Come on, guys, I’m tired—what do you want me to do, just confess to it?’ It’s like, yeah—I wanted to get it over with, get home, and get some sleep... Eighteen years and nine months later, I finally get to go home.”
Sleep deprivation and false confessions

Table 1. Percentages (and raw numbers) of rested and sleep-deprived (TSD) participants who signed the statement containing a false admission of wrongdoing after the first request (left side) and both requests (right side).

<table>
<thead>
<tr>
<th>False admission (first request?)</th>
<th>Rested</th>
<th>TSD</th>
<th>False admission (both requests?)</th>
<th>Rested</th>
<th>TSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>18% (8)</td>
<td>50% (22)</td>
<td>Yes</td>
<td>38.6% (17)</td>
<td>68.2% (39)</td>
</tr>
<tr>
<td>Refused</td>
<td>82% (34)</td>
<td>50% (22)</td>
<td>Refused</td>
<td>61.4% (27)</td>
<td>31.8% (14)</td>
</tr>
<tr>
<td>Total</td>
<td>100% (44)</td>
<td>100% (44)</td>
<td>Total</td>
<td>100% (44)</td>
<td>100% (44)</td>
</tr>
</tbody>
</table>

We urge you to please confirm that the researcher's account is accurate. Please read their account, which is included below:

The participant arrived at the lab approximately one week ago to complete some of the study procedures. The participant signed a consent form indicating that they would complete the study procedures. The participant completed a questionnaire about their memory for various childhood events. Before leaving the lab, the participant was instructed to return today for the second part of the experiment. Over the course of the week, I noticed that the participant had pressed the ‘escape’ key on the keyboard during their first visit to the lab last week, thereby causing the loss of valuable data. The participant returned today and has since completed several questionnaires without further incident.

Please confirm that the researcher's account of your participation in the lab's study procedures is accurately described above:

Yes []
No []

Please verify the researcher's account by typing your name below:

John Doe

Fig. 2. Percentage of participants (collapsed across conditions) that signed the statement as a function of self-reported sleepiness using the Stanford Sleepiness Scale. Participants who selected a 6 or 7 on the 7-point Stanford Sleepiness scale (25) were categorized as high in sleepiness, whereas participants who selected a rating of less than 6 were categorized as low/medium sleepiness. OR (95% C.I.) = 4.5 (1.5, 13.5).
Fig. 1. Percentage of participants that signed the statement following both requests as a function of scores on the CRT.

Fig. 5. Changes in self-reported sleepiness (24), as well as positive and negative affect (25) from session 2 (during which all participants were rested) to session 3 (during which participants were either rested or sleep-deprived). Sleep-deprived participants dramatically increased their sleepiness ratings, t(43) = 10.5, P < 0.001, whereas rested participants showed no change in sleepiness ratings, P = 0.24. Negative affect decreased for both sleep-deprived participants, t(43) = 2.47, P = 0.02, and for rested participants, t(41) = 3.29, P < 0.001. Positive affect significantly decreased for sleep-deprived participants, t(43) = 10.39, P < 0.001, and also decreased for rested participants, but here the change did not achieve statistical significance, t(41) = 1.86, P = 0.07.
Significance

False confessions occur surprisingly frequently in the context of interrogations and criminal investigations. Indeed, false confessions are thought to account for approximately 15–25% of wrongful convictions in the United States. Here we demonstrate that sleep deprivation increases the likelihood that a person will falsely confess to wrongdoing that never occurred. Furthermore, our data suggest that it may be possible to identify certain individuals who are especially likely to falsely confess while sleep deprived. The present research is a crucial step toward understanding the role of sleep deprivation in the problem of false confession and, in turn, raises complex questions about the use of sleep deprivation in the interrogation of innocent and guilty suspects.
Sleep deprivation increases formation of false memory

JUNE C. LO, PEARLYNE L. H. CHONG, SHANKARI GANESAN, RUTH L. F. LEONG and MICHAEL W. L. CHEE
Centre for Cognitive Neurosciences, Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore

KEYWORDS
false memory, adults, cognitive function, memory formation, sleep deprivation

Correspondence
Michael W. L. Chee, Centre for Cognitive Neurosciences, Duke-NUS Graduate Medical School, 116857 Singapore.
Tel: +65 6779 6100
fax: +65 6779 6105
e-mail: michael.chee@duke-nus.edu.sg
Accepted in revised form 22 May 2015; received 25 September 2015
DOI: 10.1111/jre.12406

SUMMARY
Retrieving false information can have serious consequences. Sleep is important for memory, but voluntary sleep curtailment is becoming more rampant. Here, the misinformation paradigm was used to investigate false memory formation after 1 night of total sleep deprivation in healthy young adults (N = 58, mean age ± SD = 22.10 ± 1.60 years; 29 males), and 7 nights of partial sleep deprivation (5 h sleep opportunity) in these young adults and healthy adolescents (N = 54, mean age ± SD = 16.67 ± 1.03 years; 25 males). In both age groups, sleep-deprived individuals were more likely than well-rested persons to incorporate misleading post-event information into their responses during memory retrieval (P < 0.05). These findings reiterate the importance of adequate sleep in optimal cognitive functioning, reveal the vulnerability of adolescents’ memory during sleep curtailment, and suggest the need to assess eyewitnesses’ sleep history after encountering misleading information.

Figure 1. Protocol of Experiment 1. (a) The three groups of participants differed in their sleep history prior to performing the misinformation paradigm. While time in bed (TIB) for the control and the partial sleep deprivation (PSD) groups were 8 and 5 h, respectively, for 7 nights, the total sleep deprivation (TSD) group fell asleep their habitual sleep schedule for 7 nights before spending an entire night awake at the laboratory. (b) The misinformation paradigm was administered at 10:00 h after the sleep history manipulation period. Participants were shown two crimes in this form of photographs (event-encoding phase) and made two that might not be consistent with the photograph (misinformation phase). Memory of the crimes was tested in the third phase (memory and source tests). Successive phases of the misinformation paradigm were, respectively, separated by a 45-min and a 30-min period during which participants completed the Psychomotor Vigilance Task (PVT), the Karolinska Sleepiness Scale (KSS), and some questionnaires.
Differenze non elevate e limitate alle risposte congruenti con le misinformazioni (tendenza maggiore a incorporare false informazioni)
Anche in questo secondo esperimento, differenze non elevate e limitate alle risposte congruenti con le misinformazioni.
A BRIEF HISTORY OF SLEEP DEPRIVATION AND TORTURE

JEFF MANN • OCT 35, 2012 • FEATURES