
Chapter 1

Strain gauge measurements

1.1 Resistance strain gauges

Let us consider a wire conductor, consisting of a material of resistivity ρ, of lenght ` and of
section A; its resistance is given by the relationship:

R =
ρ`

A
(1.1)

if the conductor is subjected to a deformation, e.g. to a traction which causes an increase in its
length and a contraction in its section, a resistance variation is obtained according to:

dR =

(
∂R

∂ρ

)
dρ +

(
∂R

∂`

)
d` +

(
∂R

∂A

)
dA (1.2)

that becomes:

dR

R
=

dρ

ρ
+

d`

`
− dA

A
(1.3)

If we devote by r a characteristic dimension of the wire cross-section, e.g. the radius, and by ν
the Poisson’s ratio of the conductor material, we have:

dA

A
=

2dr

r
= − 2νd`

`
(1.4)

in the case of a circular cross-section wire we have:

A = πr2 (1.5)

dA = 2πr dr (1.6)

(1.7)

Figure 1.1: Strain gauge calibration test.
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and so:

dA

A
=

2dr

r
(1.8)

then:

dR

R
=

dρ

ρ
+

d`

`
+

2νd`

`
(1.9)

and placing:

d`

`
= εx (1.10)

we get:

dR

R
=

dρ

ρ
+ εx(1 + 2ν) (1.11)

By indicating with K the extensometer “calibration factor” which represents its sensitivity, i.e.
the variation in resistance as a function of strain, Eq. 1.11 can be written as:

dR

R
= K εx (1.12)

where:

K = (1 + 2ν) +

(
1

εx

)
dρ

ρ
(1.13)

in case there is no variation of resistivity ρ as a function of deformation, from Eq. 1.13 we have:

K = 1 + 2ν (1.14)

Eq. 1.14 identifies K values ranging between 1.5 and 2, typically of around 1.6. Actually, its
value for a resistance strain gauge is higher: generally K is very close to 2. This increment with
respect to that proposed by Eq. 1.14 is due to a resistivity variation. This variation, however,
is practically constant with strain, at least for a sufficiently high range of strain values (up to a
few per cent with a limit value of up to 4 %).
The K value to be used in the measurement is determined experimentally and provided by the
manufacturer. Table 1 shows the characteristics of some alloys commonly used for resistance
strain gauges.

Material Composition K factor

Constantan 45 Ni, 55 Cu 2.1
Nickel chrome 80 Ni, 20 Cr 2.1
Karma 74 Ni,20 Cr,3 Al,3 Fe 2.0
Platinum tungsten 92 Pt, 8 W 4.0

Table 1: characteristics of alloys for extensometry
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As seen from Eq. 1.12, the resistance variation due to deformation is very small; for example,
with:

R = 120 ohm

εx = 100 µs (1.15)

K = 2

is obtained from Eq. 1.12:

dR = K εx R = 2.4 10−2 ohm (1.16)

For a manufacturing point of view, the strain gauges can be either wire or photo-etched.
Wire strains gauges have quite large areas, of the order of mm2, and wire diameter varies between
0.01 and 0.025 mm. They have some advantages, such as robustness, but various limitations
due to the heating related to the Joule effect.
Nowadays, photo-etched strain gauges are much more common, which make it possible to ”draw”
grids with a wide variety of configurations. The minimum grid size can be as small as 0.05 mm,
compared to 2 mm for wire strain gauges, and the non-circular cross-section of the conductor
allows a larger radiating surface and thus greater heat dissipation.
The experimental determination of the calibration factor K is carried out by subjecting a test
specimen, of known geometry and elastic characteristics, to a strain state which is also known.
Let us consider a beam subjected to a force F , Fig. 1.1; between the supports it is stressed by
a constant bending moment given by:

Mf = F a (1.17)

and therefore the deformation on the surface of the beam where the extensometer is glued is
constant. If the beam geometry and the material elastic characteristics are known, it is possi-
ble to evaluate the K factor from the experimental measurement of dR/R using the following
relation:

K =

(
1

ε

)
dR

R
(1.18)

Due to the bonding and the extensometer thickness, the measuring grid is actually at a distance
from the beam neutral which is different from the geometric reference distance h. However, the
additional thickness h∗ is a few hundreads of a mm, which is much less than the beam geometric
dimension h/2, and therefore its effect is negligible.
Of course, K can be evaluated by other tests than the one presented, e.g. by simple tensile tests
for for which the position does not matter; in general, the uncertainty with which the K factor
is 1%.
The strain gauge provides correct values as long as it is used in the case of monoaxial stress on
a material with a Poisson’s coefficient, ν, equal to that of the material used for extensometer
calibration ( generally νtar = 0.285). Two calibration factors must be considered, denoted by
Ka and Kt; the subscripts a and t stand for axial and transverse, which correspond respectively
to the case in which the strain gauge axis is parallel to the uniaxial strain direction and to the
case in which it is orthogonal. Thus we have:

dR

R
= Ka εa + Kt εt (1.19)
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where εa, εt are respectively the deformations in the parallel and orthogonal directions to the
strain gauge axis. We have:

εt
εa

= − νtar (1.20)

where νtar is the Poisson’s coefficient of the material for which the extensometer has been
calibrated. Therefore:

dR

R
= Ka εa − Ktνtarεa = Ka

(
1− νtar

Kt

Ka

)
εa (1.21)

Therefore, the calibration factor K in Eq. 1.12 is:

K = Ka

(
1− νtar

Kt

Ka

)
(1.22)

The ratio between the transversal calibration coefficient and the axial one is known as ”transverse
sensitivity”:

St =
Kt

Ka
(1.23)

Then 1.22 can be written as:

K = Ka (1− νtarSt) (1.24)

An error occurs if we use Eq. 1.12 with ν 6= νtar unless St = 0 or the deformation field is uni-
axial. If refer is made to a strain gauge in a biaxial field with axial and transverse deformations,
εa and εt, the magnitude of the error can be assessed with the following procedure. Starting
from:

dR

R
= Ka

(
1 + St

εt
εa

)
εa =

[
K

(1− νtarSt)

](
1 + St

εt
εa

)
εa (1.25)

we get:

εa =

[
(dR/R)

K

]
(1− νtarSt)(

1 + St
εt
εa

) (1.26)

The deformation ε
′
a, obtained by considering only the extensometer factor, can be found:

ε
′
a =

(dR/R)

K
(1.27)

therefore:

εa =

[
ε
′
a (1− νtarSt)

]
[
1 + St

(
εt
εa

)] (1.28)
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From the definition:

ηa =

(
ε
′
a − εa

)
εa

(1.29)

the error due to transverse deformation is:

ηa =

[
St

(
εt
εa

+ νtar

)]
(1− νtarSt)

' St
(
εt
εa

+ νtar

)
(1.30)

For example, in the case of a strain gauge with St = 0.03, bounded to a stressed specimen with
biaxial strains εt/εa = −0.4, an error of approx. 0.3% occurs.
The effect of transverse sensitivity is important from a general measurement point of view.
However, if the transverse sensitivity is of the order of one per thousand, the consequent error
can be considered included in the uncertainty with which the calibration factor K is provided
(generally around one per cent). For example if St = 0.001, under the same conditions as above,
we have ηa = 0.0001 which is negligible as it is included in the uncertainty of the K factor.
Nevertheless, by using two strain gauges simultaneously, it is possible to obtain the actual
deformations with the following relations

εx = (1− νtarSt)
(
ε∗x − Stε∗y

)
(1.31)

εy = (1− νtarSt)
(
ε∗y − Stε∗x

)
(1.32)

where ε∗x, ε∗y are the measured deformations and εx, εy are the actual ones.
Materials used to manufacture strain gauges are likely to have:

� linear variation of resistance with deformation, both in tension and in compression;

� high calibration factor K;

� high elastic limit;

� great fatigue resistance.

Table 2 shows some fundamental characteristics for two materials normally used in extensometry:
Costantana and Karma.

characteristic constantan karma

calibration factor K 2.1 2.1
resistivity (Ωm× 10−4) 48 125
coeff. of variation of resistance γ (∆R/R/ oC × 10−4) 0.3 0.2
yield stress (MPa) 460 1000

Table 2: characteristics of materials for strain gauges

Temperature variations have both a direct effect on material behaviour and an indirect effect
on connection characteristics leading to changes in the calibration factor K.
Fig. 1.2 shows the trend of ∆K/K depending on the temperature; it can be seen that in a range
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Figure 1.2: Typical curves of the strain gauge calibration factor as a function of temperature.

of plus or minus 50 oC around room temperature the K variation is limited to one percent. In
the case of linear trend we have:

K(T ) = K (1 + β∗(T − T0)) (1.33)

where the coefficient β∗ is estimated from the trends shown in Fig. 1.2.

1.2 Temperature effect

The resistance variation due to temperature is given by:

∆R = γ R ∆T (1.34)

where ∆T is the temperature change with respect to a reference value, generally the reference
T0 is the room temperature, and γ is the coefficient of variation of resistance with temperature,
expressed in ∆R/R/ oC with typical values of 40 × 10−4 for platinum and of 3 × 10−5 for
costantana.
Therefore, in the case of a platinum extensometer, there is a resistance variation per degree
equal to:

∆R

R
= 40× 10−4 1/ oC (1.35)

to which corresponds an apparent deformation:

εapp = (1/K)∆R/R = 830 µs/ oC (1.36)

Strain gauges made of platinum have higher K values than those made of costantana, generally
Kpla = 4.8.
In the case of costantana strain gauge we have:

εapp = 15 µs/ oC (1.37)
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The difference is great (about two orders of magnitude) and leads to major difficulties in using
platinum extensometer. However, also the relatively small value of the apparent deformation
for the constantana strain gauge causes a non-negligible effect, even for temperature variations
of only a few degrees.
The effect due to the temperature can be compensated for in different ways. For example, two
strain gauges can be used on two active branches of the measuring bridge: they are brought to
the same temperature but only one is stressed, so that the apparent deformation due solely to
temperature variation can be eliminated.
As an example of self-compensation, let us consider a constantana strain gauge, with a thermal
expansion coefficient of αext = 15 × 10−6 oC−1 placed on a steel test specimen, with αspec =
11× 10−6 oC−1 which is heated to a temperature T . Since the thermal expansion coefficient of
constantan is greater than that of steel, the stran gauge would expand more than the specimen.
Assuming that the strain gauge completely follows the deformation of the structure, the strain
gauge contracts resulting in a decrease in resistance given by: :

∆R

R
= K εtherm (1.38)

but:

εtherm = (αspec − αext) ∆T (1.39)

therefore the resistance variation is:

(∆R/R)therm = K (αspec − αext) ∆T (1.40)

The total resistance variation, due to the temperature variation ∆T , is:

(∆R/R)tot = (γ +K (αspec − αext)) ∆T (1.41)

hence the total apparent deformation due to temperature:

εapp = (γ/K + (αspec − αext)) ∆T (1.42)

εapp varies linearly with the temperature in the case where γ, αspec, αext, K are constant with
temperature (which actually is not the case). Tab 2.1 shows the thermal expansion coefficients
of some materials.

material α × 10−6 oC−1

Quartz .5
Glass 9.0
Titanium 9.3
Steel 11.8
Copper 17.6
Aluminum 22.5
Magnesium 25.9
Epoxy resin 90.0
Acrylic resin 180.0

Table 2.1: thermal expansion coefficients.
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Figure 1.3: Trend of εapp as a function of temperature.

It is observed that, at least for a certain temperature range, a self-compensation effect can be
obtained if:

γ/K + (αprov − αest) = 0 (1.43)

Therefore, for each strain gauge and depending on the material on which it is to be applied,
a self-compensation curve of the type shown in Fig. 1.3 is provided. The self-compensation
curve provides εapp as a function of temperature allowing its value to be assessed under working
condition:

ε∗ = εmis − εapp (1.44)

where ε∗ is the actual strain value and εmis is the measured one.
Of course the curve provides a partial compensation not including, e.g, the variation of the strain
gauge K factor with temperature. To take this effect into account, one can apply the formula:

ε∗ = (εmis − εapp)K/KT (1.45)

Environmental effects are also important. In particular, the need for protection from atmospheric
humidity can become very complex in the case of prolonged exposure to saline conditions.
Furthermore, pressure acting on the strain gauge may lead to a deformation:

εp = − (1− 2ν)p/E = Kpp (1.46)

where Kp is the compressibility factor; several experiments have shown that the correction effect
proposed by Eq. 1.46 is not sufficient.
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Worthnoting is the case of cyclic stress conditions, i.e. fatigue tests, as the experiment can last
millions of cycles. A first effect is the zero ”drift”: during the measurement the reference value
shifts and an apparent fatigue deformation follows; the manufacturer provides a graph which
indicates the zero drift as a function of the number of cycles performed. A second effect is the
possible triggering of ”cracks”, which can cause the extensometer to break.
Typical resistance values of commercial strain gauges are: 120, 350, 600 and 1000 ohms. On
the one hand, a high resistance value favors measurement sensitivity but it is accompanied by
practical problems (e.g. the higher the resistance, the higher the electical insulation must be).
On the other hand, small resistance values, in addition to lower sensitivity, present greater
problems with regard to the disturbing effect of connecting cables.
The effect related to heat dissipation is also very important; the dissipated power, when the
strain gauge is connected to the Wheatstone bridge, is given by:

P = V 2/R = i2R (1.47)

where V is the bridge supply voltage and R is the strain gauge resistance;
Important factor in assessing dissipation characteristics are:

� extensometer size;

� grid configuration;

� adhesive type;

� specimen material;

� protective treatment;

� ventilation.

The power density, PD is the ratio between the power to be dissipated, P , and the surface of
the extensometer, Ae.

PD = P/Ae (1.48)

Table 2.2 shows the admissible PD for different materials to which the extensometer could be
attached.

material PD (W/mm2)

Aluminum 0.008—0.016
Steel 0.003 —0.008
Glass, ceramics 0.0003 —0.0008
Plastics 0.00003 —0.00008

Tabella 2.2: dissipable power density
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With a Wheatstone bridge configuration, using four equal active branches, the bridge voltage
VB is related to the allowable power density:

V 2
B = 4 Ae PD R (1.49)

Since the supply voltages used in the bridge are usually of the order of a few Volts, high resistance
strain gauges should be used when connecting to materials with low heat dissipation.
In addition, it is important to consider the effect of very high and very low temperatures on
strain gauge measurements. At high temperatures the resistance is a function of deformation,
temperature and time R = f(ε, T, t). We have therefore:

∆R/R = (1/R)(∂fε)∆ε+ (1/R)(∂fT )∆T + (1/R)(∂ft)∆t (1.50)

If we denote by:

K = (1/R)∂f/∂ε

KT = (1/R)∂f/∂T (1.51)

KT = (1/R)∂f/∂t

respectively the extensometer calibration factor, the temperature sensitivity and the time dura-
tion sensitivity, we have:

∆R/R = K∆ε + KT∆T + Kt∆t (1.52)

As seen above, sensitivity to temperature variations is minimal in the temperature range of
−20 oC to 70 oC. For much higher temperature values, compensation is not sufficient and
corrective factors must be used to account for apparent deformation.
In general, karma is more suitable than constantana for use at high temperature up to 260 oC.
In the case of very low temperatures, such as a −196 oC, there are two effects. The first is related
to the variation of the factor K with temperature, as shown in Fig. 1.4. These variations are
limited, around −2% for costantana and about 4% for karma at a temperature of −200 o C.
The second effect is related to high apparent deformation as a function of small temperature
variations. If temperature sensors are used together with the extensometer, then the measured
temperatures can be used to evaluate apparent deformations.
Typically, cryogenic temperatures are achieved with liquid nitrogen, liquid hydrogen or liquid
helium. Since these are insulating materials, they do not require special protection between the
strain gauge and the liquid.
Furthermore, at very low temperature there are significant changes in mechanical properties,
e.g. the modulus of elasticity for some materials varies significantly (at temperatures as low as
−200 oC there wuold be an increase of between 5% and 20% compared to the corresponding
value at room temperature).

1.3 Semiconductor strain gauges

This is a sensor consisting of a crystal, e.g. silicon, which has a very high sensitivity to deforma-
tion: calibration factor K of the order of 200 can be achieved, depending on the type and extent
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Figure 1.4: Strain gauge factors as a function of temperature.

of “doping” 1 in the crystal. The commercial development of this type of transducer dates back
to the 1960s.
The extensometer factor, as seen previously in the case of the resistance extensometer (in the
introductory example for an ideal cylindrical conductor), is given by:

K = (1 + 2ν) + (1/ε)dρ/ρ (1.54)

the term (1 + 2ν) is close to 1.6 while the term related to the variation of resistivity (which in
the case of resistance strain gauges is between 0.4 and 2.5) can reach much higher values, of the
order of 100 or 200. In practice, K values ranging from negative values of -150 to positive values
of +175 2 can be obtained. This is a much higher sensitivity, about two orders of magnitude,
than that of resistance strain gauges; furthermore, strain gauges with negative K values can be
used with appropriate connections in the Wheatstone bridge.
Generally, silicon crystals are used. Boron is used for P -type impurities, which give a positive
K value, and arsenic for N -type impurities, which give a negative K value.
The great value of the material resistivity3 (about a thousand times higher than that of costan-

1The semiconductor, due to impurities with concentrations of 1016 − 1020 atoms/cm3, can be expressed by:

ρ = 1/(e N µ) (1.53)

where e is the electron charge, which depends on the type of doping, N and µ are the number and mobility of
the particles and depend on the amount of doping and on the magnitude and direction of deformation.

2Positive K factors are obtained with P-type doping (e.g. with barium) and negative K factors are obtained
with N-type doping (e.g. with arsenic)

3
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tana) allows not to build the “strain gauge grid” as only one element is sufficient to make a
highly sensitive strain gauge. Therefore, these sensors can detect very small and can be used in
miniature transducers.
A semiconductor crystal is electrically anisotropic. The relationship between the electric field
and the current density is established in relation to the crystal axes, denoted by the indices 1,
2, 3, accordingly to the following matrix relation:

Ec1
Ec2
Ec3

 =

 ρ11 ρ12 ρ13

ρ21 ρ22 ρ23

ρ31 ρ32 ρ33


j1
j2
j3

 (1.55)

the first subscript in the term ρij of the resistivity matrix indicates the field component while
the second one denotes the current component.
Isotropic conduction occurs only if:

Ec1
Ec2
Ec3

 =

 ρ 0 0
0 ρ 0
0 0 ρ


j1
j2
j3

 (1.56)

In the case of an unstressed crystal 1.56 is verified and 1.55 reduces to:

Ec1 = ρ j1 Ec2 = ρ j2 Ec3 = ρ j3 (1.57)

When the crystal is stressed there is a piezoresistive effect that can be described by the relation:

ρij = δijρ+ πijklσkl (1.58)

where the subscripts ijkl range from 1 to 3 and the tensor π is a function of the crystal and of
the type and extent of impurities.
Considering a silicon cubic crystal and referring to its intrinsic reference system, the piezoresistive
coefficients are reduced to three independent ones and the π matrix has the structure:

π = ρ



π11 π12 π12 0 0 0
π12 π11 π12 0 0 0
π12 π12 π11 0 0 0
0 0 0 π44 0 0
0 0 0 0 π44 0
0 0 0 0 0 π44


(1.59)

From 1.59 we have the relationships:

π1111 = π2222 = π3333 = ρπ11 (1.60)

and similar ones, thus introducing three independent coefficients. Then we have:

ρ11 = ρ [1 + π11σ11 + π12 (σ22 + σ33)]

ρ22 = ρ [1 + π11σ22 + π12 (σ33 + σ11)]

ρ33 = ρ [1 + π11σ33 + π12 (σ11 + σ22)]

ρ12 = ρπ44σ12 (1.61)

ρ23 = ρπ44σ23

ρ31 = ρπ44σ31

The resistivity in the case of P -type semiconductors is of the order of 500 µΩm, while for the constantana is
0.5 µΩm.
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Figure 1.5: Geometry of a generic axial semiconductor (unit vector g)

By substituting 1.61 in 1.55 we have:

Ec1/ρ = j1 [1 + π11σ11 + π12 (σ22 + σ33)] + π44 (i2σ12 + i3σ31)

Ec2/ρ = j2 [1 + π11σ22 + π12 (σ33 + σ11)] + π44 (i3σ23 + i1σ12) (1.62)

Ec3/ρ = j3 [1 + π11σ33 + π12 (σ11 + σ33)] + π44 (i1σ31 + i2σ23)

These relationships show that the tension on the element depends on the current density, on
the stress and on the piezoresistive coefficients. If we now refer to an element in an arbitrary
position with respect to the axes of a cubic crystal, Fig. 1.5, indicated by the unit vector g of
directional cosines l, m, n, we have the relationship:

j1 = l ig

j2 = m ig (1.63)

j3 = n ig

where ig is the current in the element. Similarly, the stresses along the crystal axes, expressed
in terms of the stress σg in the reference system of the element, are:4

σ11 = l2 σg ; σ22 = m2 σg ; σ33 = n2 σg

σ12 = l m σg ; σ23 = m n σg ; σ31 = n l σg (1.64)

we have also:

E · g = Eg = l Ec1 + m Ec2 + n Ec3 (1.65)

4If U makes it possible to go from the components of a vector in the reference having the vector g as third

axis to its components 1 2 3, then T = UTgU
T , being Tg =

[
0, 0, 0
0, 0, 0
0, 0, σg

]
ed U having last column equal to (lmn)
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by substituting 1.62 and 1.64 in 1.65, we have:

Eg/ρ = ig
[
1 + σg

(
π11 + 2 (π12 + π44 − π11)

(
l2m2 +m2n2 + n2l2

))]
(1.66)

that can be written as:

Eg/ρ = ig (1 + πgσg) (1.67)

where πg is the element stress sensitivity and is related to the semiconductor piezoresistive
coefficients by the relations:

πg = A+B
(
l2m2 +m2n2 + n2l2

)
(1.68)

with A = π11 and B = 2 (π12 + π44 − π11).
From 1.68 it can be seen that the stress sensitivity can be varied wheter by acting on the
semiconductor orientation (i.e. by varying the directional cosines l, m, n) or on the extent and
type, P or N , of impurities.
The conditions for optimizing the direction g can be obtained by calculating the derivatives of
the sensitivity πg with respect to the two independent directional cosines, i.e. with the relations:

∂πgl = l
(
2− 4l2 − 2m2

)
= 0

∂πgm = m
(
2− 4m2 − 2l2

)
= 0 (1.69)

From 1.67 we see that the difference of Eg before and after the stress is given by:

∆Eg/ρ = ig (1 + πgσg)− ig = igπgσg (1.70)

normalizing 1.70 with respect to Eg = igρ, we get:

∆Eg/Eg = ∆Rg/Rg = πgσg (1.71)

In the semiconductor there is a uniaxial stress state with:

σg = Es ε (1.72)

where Es is the silicon elasticity modulus and ε it is the deformation that is transmitted to the
semiconductor by the structure under test. From 1.72 and 1.71, we have:

∆Rg/Rg = πgEsε = Kscε (1.73)

where Ksc can assume very high values up to about 200. As seen from 1.54 the extensometer
calibration factor is given by:

K = (1 + 2ν) +Ksc (1.74)

where the term (1 + 2ν) is due to dimensional variations and has a value between 1.6 and 2.0;
due to the very high value of Ksc, the contribution of this term is relatively unimportant.
The response of the semiconductor extensometer is highly non-linear, with respect to the defor-
mation itself and temperature. A relationship of the type below can be considered:

K(T, ε) = (T0/T )K0 + C1 (T0/T )2 ε+ C2 (T0/T )3 ε2 + ... (1.75)
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Figure 1.6: Wheatstone bridge with constant voltage scheme

where K0 is the extensometer factor corresponding to the reference temperature, T0, and zero
strain, T and ε are respectively the working temperature and deformation, C1 and C2 are
constants which depend on the semiconductor characteristics.
A temperature compensation effect can be achieved by using two strain gauges, exploting the
effect of positive and negative doping. In this way, K factor can reach up values of 250 with an
apparent deformation limited to only 0.5 µs/oC in a temperature range between 10 and 50 oC.
From 1.75 we see the non-linear relation between the response of a semiconductor extensometer
and the deformation; for low concentration levels the non-linearity is significant while the trend
is practically linear with an appropriate choice of the concentration value.
The fatigue life of semiconductor strain gauges is generally more limited than that of resistance
strain gauges, and can reach up to 107 cycles for a strain level deformation of the order of 500 µs;
a wide selection of P -type strain gauges is available, with K values ranging between 50 and 150,
as well as of N -type strain gauges, with K values ranging between -100 and -150. Dimensions
are between 0.5 mm and a few mm.
As mentioned above, semiconductor strain gauges can be used in miniature transducers, such
as accelerometers or pressure transducers, which are characterized by high sensitivity and good
frequency response.
The maximum current that can flow through the semiconductor strain gauge is limited by the
heat that can be dissipated; this quantity depends on the element size, on the connective adhesive
characteristics and on the properties of the structure under test. Indicatively, the power that
can be dissipated per unit of length is of the order of 4-8 W/m, which leads to a dissipable value
of 0.01 W for a single semiconductor extensometer.
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1.4 The Wheatstone bridge with constant voltage

Let us consider the Wheatstone bridge in the configuration with only resistances on its branches,
Fig. 1.6. By indicating with V the voltage applied to the terminals A C, we have:

VAB =
V R1

R1 +R2
(1.76)

VAD =
V R4

R3 +R4
(1.77)

E∗ = VBD = VAB − VAD (1.78)

E∗ =
(R1R3 −R2R4)V

(R1 +R2)(R3 +R4)
(1.79)

The voltage at the nodes BD, denoted by E∗, is zero, and therefore the bridge is in equilibrium,
if the following condition is verified:

R1R3 = R2R4 (1.80)

Therefore, 1.80 is known as balancing condition of the bridge. It is used for static strain gauge
measurements by placing the measuring extensometer in a bridge branch: the bridge is brought
into equilibrium before the application of strain so that E∗ = 0. Then, the deformation applied
to the extensometer can be determined from the unbalanced bridge voltage value.
Let us consider variations in resistance: ∆R1, ∆R2, ∆R3, ∆R4. The output voltage is obtained
from 1.79:

∆E∗ =

(
A

B

)
V (1.81)

if second-order terms are neglected and if the balancing condition was satisfied before loading,
A and B in 1.81 are:

A = R1R3

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
B =

(
R1R3

R1R2

)
(R1 +R2)2 (1.82)

then:

∆E∗ =
R1R2

(R1 +R2)2

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
V (1.83)

if we indicate with:

r =

(
R2

R1

)
(1.84)

Eq. 1.83 can be written as:

∆E∗ =
r

(1 + r)2

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
V (1.85)

Eq. 1.85 is the fundamental equation for strain measurements, as long as the deformation is
limited to a maximum value of a few per cent.

16



A synthetic demonstration of Eq. 1.85 is herein presented. Starting from the initial balancing
condition:

(R1R3 = R2R4) (1.86)

and perturbing the resistance R1 with R1 + ∆R1, we get:

∆E∗ = E − 0 =
(R1 + ∆R1)R3 −R2R3

(R1 + ∆R1 +R2)(R3 +R4)
V =

∆R1

(R1+∆R1)(R3+R4)
R3

+ R2(R3+R4)
R3

V (1.87)

considering another balanced bridge in which R1 = R2 (for the equilibrium condition, it must
be R3 = R4), we have:

∆E∗ = V
∆R1

2(R1 + ∆R1) + 2R1
=

∆R1
2R1

2 + ∆R1
R1

(1.88)

which can be linearized with respect to the variable ∆R1/R1, thus obtaining:

∆E∗

V
=

1

4

∆R1

R1
. (1.89)

By repeating the same procedure considering R2 and R4, similar results are obtained expect for
a change in sign, i.e.:

∆E∗

V
= −1

4

∆R2

R2
. (1.90)

Having linearized, it is possible to consider the superposition principle:

∆E∗

V
=

1

4

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
(1.91)

which is Eq.1.85 for r = 1.
The sensitivity of the bridge, to which the strain gauge has been connected, can be calculated
with:

S =
∆E∗

ε
=
V

ε

r

(1 + r)2

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
(1.92)

if we consider a bridge with multiple sensors (n = 1, 2, 3, 4), whose output is added, we have:

∑
n

∆Rn
Rn

= n
∆R

R
(1.93)

indicating by Kg the single extensometer factor, defined by:

∆R

R
= Kgε (1.94)

Eq. 1.93 becomes: ∑
n

∆Rn
Rn

= nKgε (1.95)
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substituting Eq. 1.95 into Eq.1.92, we get:

S = V
r

(1 + r)2
nKg (1.96)

This expression for the sensitivity is valid if the bridge supply voltage is constant, i.e. if V is
independent on the current flowing through the extensometer. The sensitivity depends on the
number n of the active branches of the bridge, on the extensometer Kg factor, on the bridge
supply voltage V and on the ratio r between resistances. From the trend of r/(1 + r)2, it can be
seen that the maximum sensitivity value is obtained for r = 1, i.e. when R1 = R2; under these
conditions and in the case of four active branches of the bridge, we have:

S = KgV (1.97)

which is the maximum sensitivity value of the bridge. This value is reduced to a quarter if only
one active branch of the bridge is available.
If the supply voltage is chosen in such a way that the extensometer works at the maximum
dissipable power, the situation changes depending on the number of the active branches of the
bridge and their position.

� In case of only one active element in branch 1, e.g. for measurements where temperature
compensation is not required, R1 = Rg and the other three resistances can be chosen so as
to maximize the sensitivity as long as the equilibrium condition is satisfied (R1R3 = R2R4).
The supply voltage depends on the dissipated power Pg and is given by:

V = Ig(R1 +R2) = IgRg(1 + r) = (1 + r)
√
PgRg (1.98)

considering that Ig =
√
Pg/Rg, from 1.96 and 1.97 it follows:

S =
r

(1 + r)
Kg

√
PgRg (1.99)

The sensitivity value depends on the circuit efficiency, r/(1 + r), and on the extensometer,
whose contribution is represented by Kg

√
PgRg. The circuit efficiency increases as r

increases, but r cannot be too high so as not to raise the supply voltage too much. For
example, for r = 9 (90% circuit efficiency), a bridge supply voltage of V = 42.4 V is
required for a strain gauge of resistance Rg = 120 Ω and dissipable power Pg = 0.15 W .

� In the case of an active extensometer in branch 1, R1 = Rg, and a temperature com-
pensation extensometer in branch 2, R2 = Rg, the value of the supply voltage is given
by:

V = 2IgRg = 2
√
PgRg (1.100)

Substituting Eq. 1.100 into Eq. 1.96, with n = 1, r = 1, we have:

S =
1

2
Kg

√
PgRg (1.101)

In this case the circuit efficiency is set at 0.5 since the condition R1 = R2 = Rg imposes r =
1. It is therefore evident that the use of the temperature compensation extensometer limits
the measurement efficiency: the choice of the extensometer, i.e. the product Kg

√
PgRg,

determines the achievable sensitivity.
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� In the case of an active extensometer in branch 1, R1 = Rg, and a temperature compen-
sation strain gauge in branch 4, R4 = Rg, we have:

V = Ig(R1 +R2) = IgRg(1 + r) = (1 + r)
√
PgRg (1.102)

Replacing Eq.1.102 in Eq. 1.96, we get:

S =
r

(1 + r)
Kg

√
PgRg (1.103)

The circuit sensitivity is the same as in the case of a single active branch, thus it is possible
to work with temperature compensation without a decrease in circuit sensitivity.

� If one active strain gauge is considered for each branch of the bridge (as is the case with
strain gauges on a bending beam), the signals of the individual strain gauges are added
together and the value of n in Eq. 1.96 is set to four. The supply voltage is given by:

V = 2IgRg = 2
√
PgRg (1.104)

The resistance is the same for all branches R1 = R2 = R3 = R4 = Rg, thus r = 1.
Substituting Eq. 1.104 in Eq. 1.96, we get:

S =
2 · 4 Kg

√
PgRg

(1 + r)2
(1.105)

then:

S = 2Kg

√
PgRg (1.106)

In the case of a bridge with four active extensometers, the sensitivity is more than double
that of a circuit with only one active element, and a temperature compensation effect is
also achieved.

� In the case of a circuit with two active elements on branches 1 and 4 , R1 = R4 = Rg, we
get:

V = Ig(Rg +R2) = IgRg(1 + r) = (1 + r)
√
PgRg (1.107)

Replacing Eq. 1.107 in Eq. 1.96, with n = 2 (two active elements), we have:

S =
r

(1 + r)
2KgIgRg =

2rKg

(1 + r)

√
PgRg (1.108)

The sensitivity is very close to that of the bridge with four active elements.

1.5 The Wheatstone bridge with constant current

Previously, we have dealt with bridge circuits in which the supply voltage remains constant
when the circuit resistance varies. As we have seen, if ∆R/R is large, there is a non-linear
effect. This non-linearity severely limits the use of this type of bridge with semiconductor strain
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Figure 1.7: Wheatstone bridge with constant current scheme.

gauges which have very high sensitivities and therefore very large ratio values ∆R/R.
A different situation occurs if bridge circuits with constant current generators are used, whose
development is more recent than that of the classic constant voltage bridge. These devices have
high impedance (from 1 to 10 MΩ) which vary the output voltage with the resistance so as to
keep the current constant, Fig. 1.7. At point A of the bridge we have:

I = I1 + I2 (1.109)

and the voltage across the resistor R1 is:

VAB = I1R1 (1.110)

while the voltage across the resistor R4 is:

VAD = I2R4 (1.111)

therefore the voltage at terminals BD is given by:

E∗ = VBD = VAB − VAD = I1R1 − I2R4 (1.112)

thus, the equilibrium condition of the bridge is:

I1R1 = I2R4 (1.113)

the voltage VAC is given by:

VAC = I1(R1 +R2) = I2(R3 +R4) (1.114)
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from Eq. 1.114 one has:

I1 =

(
R3 +R4

R1 +R2

)
I2 (1.115)

recalling Eq. 1.109, it is possible to express the currents I1 and I2 as a function of the current
of the generator, I. Then:

I1 =
R3 +R4

(R1 +R2 +R3 +R4)
I

I2 =
R1 +R2

(R1 +R2 +R3 +R4)
I (1.116)

Replacing Eq. 1.116 in Eq. 1.112, the bridge output voltage can be expressed as a function of
the current I:

E∗ =
(R1R3 −R2R4)

(R1 +R2 +R3 +R4)
I (1.117)

From Eq. 1.117, it can be seen that the equilibrium condition of the constant current bridge,
corresponding to zero output voltage, is given by:

R1R3 = R2R4 (1.118)

that is the same condition as in the case of the constant voltage bridge. If we consider variations
∆Ri of the resistances Ri, we have:

(E∗ + ∆E∗) =
[(R1 + ∆R1)(R3 + ∆R3)− (R2 + ∆R2)(R4 + ∆R4)]∑4

1 iRi +
∑4

1 i ∆Ri
I (1.119)

from Eq. 1.119, by imposing the initial balancing condition of the bridge, we get:

∆E∗ =
IR1R3∑

iRi +
∑
i ∆Ri

[
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

+
∆R1

R1

∆R3

R3
− ∆R2

R2

∆R4

R4

]
(1.120)

The variation of the bridge output voltage, ∆E∗, is a non-linear function of the resistance
variations ∆Ri (non-linear terms at both numerator and denominator). However, these non-
linear effects can be reduced so that, even with the large resistance variations (typical of the
semiconductor strain gauges), a linear relationship can be used.
Let us consider the bridge of Fig. 1.8. An active strain gage is placed in branch 1, a compensating
strain gage is placed in branch 4 and fixed resistances are placed on branches 3 and 4; we have:

R1 = R4 = Rg

R2 = R3 = rRg (1.121)

∆R2 = ∆R3 = 0

If there are no significant variations in temperature we have:
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Figure 1.8: Thermal compensation scheme.

∆R1 = ∆Rg

∆R4 = 0 (1.122)

and Eq. 1.120 becomes:

∆E∗ =
IRgr

2(1 + r) +
∆Rg

Rg

(
∆Rg
Rg

)
(1.123)

Eq. 1.123 is non-linear due to the term ∆Rg/Rg at denominator. To assess the magnitude of
the non-linear effect, Eq. 1.123 can be written:

∆E∗ =
IRgr

2(1 + r)

∆Rg
Rg

(1− η) (1.124)

where the non-linear term, η, is given by:

η =
(∆Rg/Rg)

2(1 + r) +
∆Rg

Rg

=
Kgε

2(1 + r) +Kgε
(1.125)

where Kg is the strain gauge factor; if reference is made to semiconductor strain gauges, the Kg

value is of the order of 100 or more and the maximum deformation is limited in the range from
1000 µs to 2000 µs. The importance of the non-linear term η can be assessed considering the
following numerical values:

Kg = 100

ε = 2000µs (1.126)

r = 10
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Figure 1.9: Connecting cables effects.

where r is the ratio between the “fixed” resistances on branches 2 and 3 and the extensometer
resistance. From Eq. 1.125, we have:

η =
100× 2× 10−3

2× 11 + 100× 2× 10−3
=

0.2

22 + 0.2
= 0.009 (1.127)

therefore, the non-linear term value is less than one percent. In practice, we have η << 1 unless
Kg is very high and r is very small; if Kg = 250 and r = 1, for ε = 2000 µs, we have η = 0.11.

1.6 Effect of connecting cables

Given that the resistance variations to be measured with strain gauges are very small, the
effects of resistance changes related to other elements of the measurement system, such as the
connecting cables leading from the extensometer to the Wheatstone bridge, can be important.
Considering a connection with an active strain gauge on branch 1 of the bridge, let Rg denote
the extensometer resistanceand 2 Rc the cables resistance, Fig. 1.9. There are three main
consequences:

1. signal attenuation;

2. effect on balance;

3. effect on temperature compensation.

The first effect, which leads to an attenuation of the resistance variation, is evaluated by con-
sidering R1 = Rg + 2Rc. It follows:

∆R1

R1
=

∆Rg
Rg + 2Rc

=
∆Rg/Rg

1 + 2Rc/Rg
' ∆Rg

Rg

(
1− 2

Rc
Rg

)
(1.128)
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Therefore:

∆R1

R1
=

∆Rg
Rg

(1− L) (1.129)

where L is the signal attenuation factor due to the connecting cables. If 2Rc << Rg, it holds:

L =
2Rc/Rg

1 + 2Rc/Rg
' 2

Rc
Rg

(1.130)

In order to keep the loss factor as small as possible, the cable resistance must be limited with
respect to the extensometer resistance.
In order to have L ≤ 0.01, it must be Rc/Rg ≤ 0.005. Therefore, if test conditions require long
cables, it may be necessary to switch from strain gauges with Rg = 120 Ω to strain gauges with
Rg = 350 Ω. Of course, the conductor resistance depends (in addition to the material) on the
cable cross-section. Indicatively, for copper calbes of 30.5 m (100 ft) length, resistance values
ranging from a few tenths to several tens of ohms are possible (0.2 ≤ RL,100 ≤ 100 Ω).
The second effect is related to the balancing of the bridge; if:

R1 = Rg + 2Rc R2 = R3 = rRg R4 = Rg (1.131)

∆R2 = ∆R3 = 0 (1.132)

the initial balancing condition R1R3 = R2R4 becomes:

(Rg + 2Rc) rRg = rRgRg (1.133)

therefore, the initial balancing condition is no longer satisfied. The balance can be obtained
with a variable resistance in parallel with R2. However, if the ratio Rc/Rg is greater than a few
percent, bridge balancing may not be possible.
The third effect concerns the temperature compensation obtained with a strain gauge on branch
4 of the bridge;

∆E∗ = V
r

(1 + r)2

(
∆R1

R1
− ∆R4

R4

)
(1.134)

If the two strain gauges are subjected to the same ∆T while only the extensometer on branch
1 is subjected to the strain, we have:

∆E∗ = V
r

(1 + r)2

[(
∆Rg

Rg + 2Rc

)
ε

+

(
∆Rg

Rg + 2Rc

)
∆T

+

(
2∆Rc

Rg + 2Rc

)
∆T

−
(

∆Rg
Rg

)
∆T

]
(1.135)

Temperature compensation is no longer achieved because of two different reasons: on the one
hand, terms 2 and 4 are not equal and, on the other hand, term 3, due to the temperature effect
of cable resistance, can be important.
These effects can be drastically reduced by placing the two strain gauges on branches 1 and 4
at a distance, with a connection of the type shown in Fig. 1.10.
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Figure 1.10: Compensation scheme for cable effects.

1.7 Strain gauges as sensors in transducers

1.7.1 Load cell

The load cell can be built from a tensile element with four strain gauges, placed as shown in
Fig. 1.11, and connected as a full bridge, according to the scheme in Fig. 1.12. The traction
load applied to the specimen leads to axial and transverse deformations given by the relations:

εa =
F

ApE

εt =
−νF
ApE

(1.136)

where Ap is the specimen section and E, ν are the elastic constants of the material. With the
strain gauges arranged as shown in Fig. 1.12, r = 1 and the following equation:

∆E∗

V
=

r

(1 + r)2

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
(1.137)

becomes:

∆E∗

V
=

1

4

(
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

)
(1.138)

if we indicate with Kg the extensometer factor, we have:

∆R1

R1
=

∆R3

R3
= Kgεa =

KgF

ApE

∆R2

R2
=

∆R4

R4
= Kgεt =

−νKgF

ApE
(1.139)

placing Eq. 1.139 into Eq. 1.138, we have:

∆E∗

V
=

KgF

2ApE
(1 + ν) = KFF (1.140)
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Figure 1.11: Load cell scheme.

Figure 1.12: Connection between Wheatstone bridge and load cell.
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which, if Kg ' 2, can be approximated with the following relation:

KF =
Kg

2ApE
(1 + ν) ' 1 + ν

ApE
(1.141)

From Eq. 1.140, it can be seen that the output is linearly proportional to the force F applied
to the specimen. The value of ∆E∗/V depends on the specimen characteristics, but generally
has a value around a few thousandths. The value of the measurable force is given by:

F = Ap
∆E∗

V

E

(1 + ν)
(1.142)

and its maximum value is also conditioned by the fatigue limit of the strain gauges used as
sensors. We have:

σ =
F

Ap
=

∆E∗

V

E

(1 + ν)
(1.143)

Let us consider the case of a steel test specimen with E = 210GPa, ν = 0.32 and ∆E∗/V =
0.003. From Eq. 1.143, it follows:

σmax =
0.003× 210× 109

1 + .32
= 477 MPa (1.144)

which is a value compatible with the fatigue limits of steel. However, the corresponding axial
deformation is:

εmax =
σmax
E

= 2271 µs (1.145)

which is a high value compared to the fatigue limits of strain gauges.
It should also be noted that the positioning of the strain gauges on the test specimen is such as
to cancel out the effect of any bending moments (due to eccentricity of the axial load or to the
presence of transverse forces). Indeed, the components M1 and M2 of the applied moment M
lead to resistance changes betweenwhich the following relationships exist:

∆R2

R2

∣∣∣∣
M1

=
−∆R4

R4

∣∣∣∣
M1

;
∆R1

R1

∣∣∣∣
M1

=
∆R3

R3

∣∣∣∣
M1

= 0

∆R3

R3

∣∣∣∣
M2

=
−∆R1

R1

∣∣∣∣
M2

;
∆R2

R2

∣∣∣∣
M2

=
∆R4

R4

∣∣∣∣
M2

= 0 (1.146)

therefore, such changes do not influence the measurement of the force F . The load cell is also
practically insensitive to the effect of torsional loads.

1.7.2 Membrane pressure transducer

A special extensometer is used to obtain the maximum measurement sensitivity. The membrane
deformation, which is measured by strain gauges, can be expressed in terms of its radial and
circumferential components with the relations:

εr =
3(1− ν2)

8Et2
(R2

0 − 3r2)p

εθ =
3(1− ν2)

8Et2
(R2

0 − r2)p (1.147)
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Figure 1.13: Deformation field in the membrane.

where p is the pressure applied to the membrane, and is the quantity to be measured, t is the
membrane thickness, R0 is the external radius and r is the radial position of the extensometer.
From Eq. 1.147, it is observed that εθ is always positive and reaches its maximum value for
r = 0, whereas εr can be either positive or negative and reaches its maximum positive value for
r = 0 and its minimum negative value for r = R0, Fig. 1.13. The special extensometer, herein
used, is designed to take advantage of this deformation distribution; the output signal is:

∆E

V
= αp

R2
0(1− ν2)

t2E
p (1.148)

Several special strain gauges for pressure transducers are manufactured, with diameters ranging
from a few millimeters to a few centimeters and with αp = 0.82. The transducer diaphragm
is deformed by the applied pressure and the pressure-deformation relationship is non-linear;
however, the behavior can be considered linear if the central displacement of the membrane is
small. The central displacement of the membrane is given by:

wc =
3R4

0(1− ν2)

16t3E
p (1.149)

if the ratio wc/t ≤ 0.25, then the relation 1.148, which expresses the voltage variation as a
function of the applied pressure, can be considered valid.
When the pressure transducer is used for dynamic measurements it is necessary that the “mem-
brane” natural frequency is considerably higher (from five to ten times) than the maximum
frequency to be considered in the dynamic analysis.
The membrane natural pulsation can be evaluated by:

ωn = 2πfn =
10.21t

R2
0

√
gE

12(1− ν2)γ
(1.150)

where γ is the material density and g is the gravitational acceleration. The result is a low-cost,
easy-to-use pressure transducer with a high natural frequency.
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Figure 1.14: Plane deformation.

1.8 Measurement of deformation and stress

1.8.1 Measurement of deformation

Let us consider consider an x, y reference system and a strain gauge, indicated by OA, of length
`, placed at an angle α with respect to the x- axis (Fig. 1.14); if deformation occurs in the
x-direction, with point A brought to position A′, the deformation in the α-direction of the
extensometer is:

εα = δ`/` (1.151)

where:

` cosα = x (1.152)

δ` = δx cosα (1.153)

then:

εα = (δx/x) cosα cosα = εx cos2 α (1.154)

with εx = δx/x.
Similarly, if a deformation occurs in y direction, with point A brought to position A′′, the
deformation in the -αdirection of the extensometer is:

εα = εy sin2 α (1.155)

with εx = δy/y;
Finally, let us look at shear strain γxy:

εα = γxy sinα cosα (1.156)
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If we now consider normal and shear strains together, we have 5

εα = εx cos2 α+ εy sin2 α+ γxy sinα cosα (1.158)

The deformation εα can be measured with the extensometer itself. Therefore, if three defor-
mations are measured at three different angles (α1, α2, α3), then three unknown deformations
in xy reference system (εx, εy, εxy) can be calculated. If Eq. 1.158 is written in term of the
angle 2α, using the trigonometric relationships 2 sinα cosα = sin 2α, sin2 α = 1

2(1 − cos 2α),
cos2 α = 1

2(1 + cos 2α), one gets:

εα = (εx + εy) /2 + ((εx − εy) /2) cos 2α+ γxy(sin 2α)/2 (1.159)

By deriving 1.159 with respect to α and by imposing the condition:

dεα/dα = 0 (1.160)

we find the angle αp which defines the main axes of deformation:

tan 2αp = (γxy/ (εx − εy)) (1.161)

Once αp is known, the main deformations εmax is obtained using the following formula:

εmax = εx cos2 αp + εy sin2 αp + γxy sinαp cosαp (1.162)

The main deformation εmin can be evaluated using the same formula at an angle (αp ± 90◦).
From the main deformations values, the the shear strain maximum value is obtained:

γxymax = εmax − εmin (1.163)

the direction of the maximum shear strain is inclined by 45◦ with respect to the main axes.
Let us consider three strain gauges, connected in such a way as to measure the deformation
at three different angles at a single point, as shown in Fig. 1.15. The following experimental
measurements are obtained:

ε1 = 850 µs (1.164)

ε2 = − 100 µs (1.165)

ε3 = 350 µs (1.166)

If we consider an xy reference system, with the x-axis coincident with the first extensometer
axis, it is possible to calculate the strains εx, εy, εxy from Eq. 1.158 and the inclination of the
main axes from Eq. 1.159.
For the first extensometer, we have:

850 = εx cos2(0) + εy sin2(0) + γxy sin(0) cos(0) (1.167)

5Note that it is indicated with εxy what is normally indicated with γxy ≡ εxy. Furthermore Eq. 1.158 can be
obtained directly using the plane deformation tensor in Cartesian coordinates[

εx εxy/2
εxy/2 εy

]
(1.157)

applying it to the generic normal to the extensometer n = {cosα, sinα}T and subsequently projecting on it the
vector obtained.
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Figure 1.15: Strain gauge rosette.

from which:

εx = 850 µs (1.168)

For the second extensometer, we have:

−100 = 850 cos2(85) + εy sin2(85) + γxy sin(85) cos 85 (1.169)

from which:

εy = − 107.2 + 0.08752 γxy (1.170)

For the third extensometer, we have:

350 = 850 cos2(−75) + εy sin2(−75) + γxy sin(−75) cos(−75) (1.171)

from which:

εy = 314.2− 0.0268 γxy (1.172)

we get then:

εy = − 3.4 µs (1.173)

γxy = 1185 µs (1.174)

From Eq. 1.159, it follows:

tan 2αp = 1185/853.4 = 1.39 (1.175)
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Then:

2αp = 54.24◦ (1.176)

αp = 27.12◦ (1.177)

From Eq. 1.162, εmax can be calculated:

εmax = 1153.4 µs (1.178)

εmin occurs at the angle:

αmin = αp ± 90◦ (1.179)

and then:

εmin = − 305.3 µs (1.180)

Finally, from Eq. 1.163 we have the maximum shear value, relative to a 45◦ inclined direction
with respect to the main axes:

γxymax = εmax − εmin = 1452.6 µs (1.181)

If the structure under test is made of a light alloy with the following elastic characteristics:

E = 70 GPa (1.182)

ν = 0.32 (1.183)

from relations:

σmax = (E/(1− ν2))(εmax + νεmin) (1.184)

σmin = (E/(1− ν2))(εmin + νεmax) (1.185)

we have:

σmax = 82.33MPa (1.186)

σmin = 4.97MPa (1.187)

and from:

σxy = (Eγxy)/(2(1 + ν)) = Gγxy (1.188)

the maximum shear value is obtained, again with reference to a direction at 45◦ with respect to
the main axes:

σxymax = 38.55MPa (1.189)

The effect of a positioning error of the strain gauges with respect to the nominal position is now
evaluated. Assuming an error of 3 degrees, we have:

εx = 850 µs (1.190)

εy = 6.8 µs (1.191)

γxy = 893.6 µs (1.192)
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From Eq. 1.161 we have:

αp = 23.32◦ (1.193)

From Eq. 1.162 we get:

εmax = 1042.7 µs (1.194)

εmin = − 185.9 µs (1.195)

From Eq. 1.163 we have then:

γxymax = εmax − εmin = 1228.6 µs (1.196)

Again in the case of light alloy, the following stresses values are obtained:

σmax = 76.67 MPa (1.197)

σmin = 11.51 MPa (1.198)

σxy = 32.58 MPa (1.199)

As can be seen from the numerical example, the effects of the strain gauge positioning error are
considerable; it is therefore clear that photoetched “rosettes” should be used, since the error of
the relative position of the strain gauges is practically negligible.

1.8.2 Stress and sliding measurement for isotropic materials

It is possible to take advantages of the transverse sensitivity of a strain gauge, St, to obtain a
stress sensor. A strain gauge can designed in such a way as to have an output proportional to
the stress along its axis, thanks to an appropriate choice of St; indeed:

∆R

R
= Ka(εa + Stεt) (1.200)

with:

St = Kt/Ka (1.201)

while the link σ − ε, in the case of plane strain, is given by:

εa =
1

E
(σa − νσt)

εt =
1

E
(σt − νσa) (1.202)

from Eq. 1.202 and Eq. 1.200, we have:

∆R

R
=
Ka

E
(σa − νσt) +

StKa

E
(σt − νσa) = (1.203)

=
σaKa

E
(1− νSt) +

σtKa

E
(St − ν) (1.204)

if:

St = ν (1.205)
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then:

∆R

R
=
Ka(1− ν2)

E
σa = Kσσa (1.206)

the resistance variation of the extensometer, ∆R/R, is independent on σt and proportional to
σa. Once the material of the extensometer and that of the specimen have been chosen, Kσ is a
constant; therefore the resistance variation is proportional to σa according to Kσ proportionality
factor.
Generally, a strain sensor consists of two extensometers arranged in a V -shape. Usually the
sensor is at a generic position in the strain field and the elements of the grid are at an angle ϑ
with respect to the sensor axis. If we denote by εx−ϑ and εx+ϑ the deformations measured by
the two extensometers, we have:

σxx =
E

2(1− ν)
(εx+ϑ + εx−ϑ) (1.207)

Indeed:

εx+ϑ = εx cos2 ϑ+ εy sin2 ϑ+ γxy sinϑ cosϑ (1.208)

εx−ϑ = εx cos2 ϑ+ εy sin2 ϑ− γxy sinϑ cosϑ (1.209)

so

εx+ϑ + εx−ϑ = 2
(
εx cos2 ϑ+ εy sin2 ϑ

)
(1.210)

that is

εx+ϑ + εx−ϑ = 2 cos2 ϑ

(
εx +

sin2 ϑ

cos2 ϑ
εy

)
(1.211)

If the angle θ is chosen so that:

tan2 ϑ = ν (1.212)

then:

cos2 ϑ =
1

1 + ν
(1.213)

we have:

εx+ϑ + εx−θ =
2

(1 + ν)
(εx + νεy) (1.214)

but:

σxx =
E

(1− ν2)
(εx + νεy) (1.215)

therefore:

σxx =
E

2(1− ν)
(εx+ϑ + εx−ϑ) (1.216)
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Figure 1.16: Diffraction extensometer.

The sensor reading directly provides the half-sum: (εx−ϑ + εx+ϑ)/2. If the condition tan2 ϑ = ν
is verified, then it is sufficient to know the elastic characteristics of the material, E and ν, to
get directly σxx, i.e. the strain along the sensor axis If ν = 0.3, then ϑ ' 30◦.
If the direction of principal stresses is known, measurement is also possible with only one exten-
someter as long as it is at a particular position ϑ corresponding to the condition tan2 ϑ = ν; in
this case, indeed, if x indicates the main direction, we have:

εx−ϑ = εx+ϑ = εϑ (1.217)

and so:

σxx =
E

(1− ν)
εϑ (1.218)

Let us now consideer two extensometers, indicated with A and B in Fig. 1.16, positioned at the
angles ϑA and ϑB with respect to the x-axis:

εA =
εx + εy

2
+
εx − εy

2
cos 2ϑA +

εxy
2

sin 2ϑA

εB =
εx + εy

2
+
εx − εy

2
cos 2ϑB +

εxy
2

sin 2ϑB (1.219)

The sliding, εxy, is:

εxy =
2(εA − εB)− (εx − εy)(cos 2ϑA − cos 2ϑB)

sin 2ϑA − sin 2ϑB
(1.220)
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if the extensometers are oriented so that it is cos(2ϑA) = cos(2ϑB), we have:

εxy =
2(εA − εB)

sin 2ϑA − sin 2ϑB
= Kxy(εA − εB) (1.221)

with:

Kxy =
2

sin 2ϑA − sin 2ϑB
(1.222)

The cosine is an even function. Thus, the condition ϑA = −ϑB also satisfies cos(2ϑA) =
cos(2ϑB). Therefore, the sliding εxy is proportional to the difference between the deformations
εA and εB. The angle ϑA = −ϑB can be any but if ϑA = π/4 is chosen, then the sliding is
simply given by:

εxy = εA − εB (1.223)

therefore, it can be measured directly with two extensometers oriented at ±45o with respect to
the x-axis and appropriately connected to two branches of a Wheatstone bridge. Four-element
“rosettes” are often used to double the sensitivity with a full bridge connection.

1.9 Optical measurements of extensometry

The widespread use of lasers as monochromatic light sources has led to the development of
various optical strain gauge systems.

1.9.1 Diffraction extensometer

The diffraction extensometer consists essentially of two laminae, which are glued or welded to a
structure of length `. They are separated by a distance ,indicated with b, to form an opening.
A monochromatic light, produced by a laser source, is sent to the aperture and produces a
diffraction effect on a screen placed at a distance R from the opening itself. If the distance R is
very large with respect to the aperture size, the distribution of light intensity by diffraction is
given by:

I = A2
0 sin2 β/β2 (1.224)

where A0 indicates the width of the light on the central line, identified by θ = 0, and β is defined
by the relation:

β = (πb/λ) sin θ (1.225)

where λ is the wavelength of monochromatic light coming from the laser source and θ is the
angle as indicated in Fig. 1.17.
If the diffraction analysis is limited to small distances from the central line, indicated with y in
Fig 1.17, we have:

sin θ ∼= y/R (1.226)
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Figure 1.17: Interference fringes.

and then:

β = (πb/λ)(y/R) (1.227)

From Eq. 1.224, it is seen that the luminous intensity cancels out if sinβ = 0 and therefore for
β = 0 or β = nπ (with n = 1, 2, ...).
If we consider the points on the screen for which I = 0, we can obtain a relation between their
position on the screen scale and the aperture size; indeed, we have:

b = (λRn/y) (1.228)

where n is the order of null point relative to the point which has position y on the scale. Due
to the structure deformation there is a variation in the opening width, which is linked to the
deformation by the relationship:

ε =
∆b

b
(1.229)

this variation in opening corresponds to a variation in diffraction.
If we consider the diffraction after the deformation, we have:

(b+ ∆b) = (λRn∗/y1) (1.230)

while before the deformation we had:

b = (λRn∗/y0) (1.231)

and therefore the deformation ε can be obtained from the relation:

ε = ∆b/b =

[
(b+ ∆b)− b

b

]
=
y0(y0 − y1)

y1y0
(1.232)

The zero point index to which the measurement refers, indicated with n∗, is chosen as high as
possible, compatibly with optical constraints, so as to obtain the highest possible values for the
distances y0, y1.
This type of sensor has several advantages, particularly in the case of high temperature measure-
ments, as it is temperature compensated if the plates are of the same material as the specimen.
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1.9.2 Interference extensometer

An optical system can be based on the interference phenomenon. This phenomenon occurs if
a monochromatic light, produced by a laser source, is reflected by two V -shaped notches on a
high surface finish of a structure, Fig. 1.9.2. The notches are 10−3 mm deep and spaced about a
tenth of a mm apart and they have a notch angle of 110◦. If the notches are small enough with
respect to the wavelength to allow light diffraction and if they are also close enough to allow
superposition of the diffraction and leading to interference effect, then the intensity of the light
is given by:

I = 4A2
0(sin2 β/β2) cos2 φ (1.233)

where:

β = (πb/λ) sin θ

φ = (πd/λ) sin θ

b = notch width

d = notch spacing

θ = notch angle

The light is reflected by the two sides of the notch resulting in two interference phenomena on
two screens generally placed at a distance of about 200 mm from the notches.
The luminous intensity canceals out and, as a result, there are black stripes on the screen at β
and φ angles given by:

β = nπ (n = 1, 2, ...) (1.234)

φ = (m+ 1)/3π (m = 0, 1, 2, ...) (1.235)
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Due to the deformation of the specimen, there is a change in the notch spacing and notch width.
These effects produce shifts in the interferences, i.e. in the position of the black trails on the
screen, which can be connected to the deformation between the notches. We have:

ε = (∆N1 −∆N2)λ/(2d sinα) (1.236)

where ∆N1, ∆N2 fringe order changes induced by the deformation and α is the angle between the
incident and diffracted light producing the interference. This method also has several advantages:
in particular, it can be used for deformation measurements on rotating structures and in extreme
environmental conditions and the temperature compensation is direct.
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