
Chapter 1

Mathematical Models in Structural
Dynamics

1.1 Descriptions of the dynamics of a structure

The dynamic model of a structure is given by a multi-degree-of-freedom system; however, this
model is an approximation of the actual situation, which is that of a continuous structure and
therefore characterised by an infinite number of degrees of freedom. For a multi-degree-of-
freedom system one has:1

Mẍ + Cẋ + Kx = f(t) (1.1)

where x is a vector, with n components, which includes the degrees of freedom chosen for the
representation of the structure (from the experimental point of view they can be the measurement
points), f(t) is the vector of the forces acting on the structure, M the is mass matrix, n × n,
and similarly C and K are the viscous damping and stiffness matrices, n × n. The model
defined by the 1.1 is the spatial model consisting of the mass, damping and stiffness matrices,
and is normally constructed by a numerical procedure (e.g. using the finite element method)
and is therefore not generally accessible by the experimental approach. From the study of free
vibration, which can be obtained numerically by determining the eigenvalues and eigenvectors of
the system 1.1 (with f(t) null), or from experimentation, n natural pulsations, ωnn , n damping
coefficients, ζn, and n deformed modals, φ(n), can be obtained; these matrices of eigenvectors,

Φ =
[
φ(1)|φ(2)|, ..., φ(n)

]
and of eigenvalues Ω2 =


ω2
n1

ω2
n2

. . .

ω2
nn

 constitute the modal

model.
From an experimental point of view, there are strong limitations in obtaining a large number
of fundamental modes of a structure and also in carrying out the measurement on a very large
number of measuring points. From the evaluation of the frequency response functions of the
structure, the frequency response model is determined; this is directly derived from the classical

1In the following, the matrices will be represented in bold uppercase letters and the vectors in lowercase bold
characters.
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experimental approach in modal analysis and can also be derived from the numerical approach.
In summary, three different models can be defined for studying the dynamics of a structure:

� space;

� modal;

� of frequency response functions.

They constitute different but equivalent ways of representing the dynamic behavior of a structure
and can be determined numerically or experimentally. The comparison between numerical and
experimental results can also be carried out on the basis of these models.

1.2 Model with a single degree of freedom - SDOF

The single degree-of-freedom model cannot represent the behavior of a structural element, but
its characteristics are important because those of the multi-degree of freedom model come from
them.
Let us consider the system characterized by a mass, m, and a spring of stiffness k ( non-damped
model).

� The equation of motion in the case of free vibration is:

mẍ+ k x = 0 (1.2)

If the above characteristic equation is considered, i.e. solutions of the type are sought:

x(t) = x∗est (1.3)

then:

(s2m+ k) = 0 −→ s1,2 = ±j

√
k

m
= ±jωn (1.4)

thus, there is a free response of the type x(t) = c1e
s1t + c2e

s2t = x0 cos(ωnt) + ẋ0
ωn

sin(ωnt).
In this case, the ”modal model” consists of a vibration mode whose natural pulsation is
given by:

ωn =
√
k/m (1.5)

and the modal deformation is given by a constant.

� In the case of forced vibration, an input function f(t) of harmonic type with ω pulse is
considered :2

f(t) = f∗ejωt (1.6)

2Eq. 1.6 is actually an equation in the complex field, since Re(f∗ejωt) = f∗ cos(ωt) and Im(f∗ejωt) =
f∗ sin(ωt) and the system in question is linear. By considering respectively the real or the imaginary part of the
output (Eq. 1.7), we would obtain the response (in real field) at steady state to the input f∗ cos(ωt) and to the
input f∗ sin(ωt).
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By imposing:

x(t) = x∗ejωt (1.7)

we have:

(−ω2m+ k)x∗ejωt = f∗ejωt (1.8)

hence the frequency response function is:

x∗

f∗
=

1

k − ω2m
= H(ω) (1.9)

which can be interpreted as the relationship between displacement and harmonic input
force and therefore represents a dynamic flexibility also referred to as receptivity or ad-
mittance; we note that the response function H(ω) does not actually depend on the type
of input function and therefore constitutes an intrinsic characteristic of the system. The
module of the H(ω) is given by:

|H(ω)| =
1√

(k − ω2m)2
(1.10)

The presence of a viscous damping term with damping coefficient c is now considered.

� The equation of motion for free vibration is:

mẍ+ cẋ+ kx = 0 (1.11)

in the search for characteristic exponents, let us impose:

x(t) = x∗est (1.12)

and we have:

ms2 + cs+ k = 0 (1.13)

from which:

s1,2 = − ωnζ ± iωn
√

1− ζ2 (1.14)

considering that:

ω2
n =

k

m
ζ =

c

c0
=

c

2
√
km

(1.15)

a solution of this type is obtained:

x(t) = c1e
s1t + c2e

s2t = c1e
−σtejω

′
nt + c2e

−σte−jω
′
nt (1.16)

that is a mode of vibration with a complex natural frequency characterized by an imaginary
part:

ω′n = ωn

√
1− ζ2 (1.17)
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and a real part:

σ = ωnζ (1.18)

Due to the damping term, the ω′n pulsation is different from the ωn pulsation of the
non-damped system. However, for aerospace structural elements (in the case of multi
degrees-of-freedom), the numerical difference terms is very limited since the values of the
dimensionless damping coefficients are very small, typically of the order of percent or lower.
Let us now consider a general aviation aircraft represented by a SDOF model with mass
m = 2000 Kg in pilot-only take-off onditions and with mass m∗ = 3000 Kg in the maxi-
mum take-off weight configuration. The displacement of the elastic system of the trolley
under load conditions with only the pilot was measured at x = 0.045 m.
If the system is required to work with a value of the damping coefficient ζ = 0.9,3 the value
of the viscous damping coefficient, c, is evaluated. In the static case K x = f , therefore:

K =
f

x
=

2000× 9.81

0.045
= 4.36× 105 N/m (1.19)

thus, the pulse is:

ω =

√
K

m
=
√

218 = 14.76 rad/s (1.20)

and therefore f =
ω

2π
= 2.35 Hz. For the system to work with ζ = 0.9, it must be

ζ = c/2ωm c = 2ωmζ = 2× 14.76× 0.9× 2000 = 5.31× 104 Kg/s (1.21)

In the case of a fully loaded aircraft, i.e. with stiffness and viscous damping values equal
to those previously evaluated but with a larger mass, we have:

ω∗ =

√
K

m∗
= 12.05 rad/s (1.22)

The damping coefficient becomes:

ζ∗ = c/2ω∗m∗ = 0.734 (1.23)

therefore the aircraft under fully loaded conditions behaves differently from the pilot-only
aircraft and it is not possible to obtain the same oscillatory behavior, i.e. the same value
of ζ, in the two configurations.

� In the case of forced vibration of harmonic type with pulsation ω, let us consider again:

f(t) = f∗ejωt (1.24)

therefore:

(−ω2m+ jωc+ k)x∗ejωt = f∗ejωt (1.25)

3It should be noted that the damping coefficient is very high in this case because the oscillatory behaviour of
the system is to be reduced.
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Thus the frequency response function, dynamic flexibility, is obtained from:

H(ω) =
x∗

f∗
=

1

k − ω2m+ jωc
(1.26)

In this case it is a complex quantity whose modulus is given by:

|H(ω)| = 1√
(k − ω2m)2 + (ωc)2

(1.27)

and whose phase is given by:

tanH(ω) =
−ωc

k − ω2m
(1.28)

An examination of the actual behavior of the structures also suggests a different model
for representing the damping characteristics; in particular the frequency dependence of
structural characteristics can be represented by a damping that varies with frequency
according to:

c =
h

ω
(1.29)

This is the structural damping or hysteresis model that corresponds to the equation (writ-
ten in a mixed time-frequency notation):

mẍ+ (k + jh)x = f(t) (1.30)

In the case of forced response, the following frequency response function occurs:

H(ω) =
x∗

f∗
=

1

k − ω2m+ jh
(1.31)

which can be written as follows:

H(ω) =
1/k

1− (ω/ωn)2 + jh∗
(1.32)

where h∗ = h/k is the structural loss factor. Therefore, the module of H(ω) is:

|H(ω)| = 1√
(k − ω2m)2 + h2

(1.33)

The reasons for the introduction of this type of damping are related to the fact that if we
consider the energy dissipated by a force of a viscoelastic component fd = cẋ in a cycle of
a harmonic motion with x(t) = sin(ωt) of period T = 2π/ω, we have:

Ed =

∫ T

0
fdẋdt =

∫ 2π/ω

0
cω2 cos2(ωt)dt = πcω (1.34)

the energy dissipated depends linearly on the frequency of the motion, a fact that does
not have experimental evidence. The characterization of the hysteretic dissipating force,
as introduced above, is evidently able to overcome this modelling error.
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1.2.1 Frequency response functions for the model SDOF

A frequency response function H(ω) has been defined as the ratio between the displacement, x∗,
and the force, f∗. Of course it is also possible to choose a different frequency response function
to describe the system: for example, with reference to the speed v(t) = ẋ(t) = v∗ejωt as the
output quantity, we can define a frequency response function, indicated with mobility, with the:

Y (ω) =
v∗

f∗
(1.35)

By considering the following relations:

x(t) = x∗ejωt −→ v(t) = ẋ(t) = v∗ejωt = jωx∗ejωt (1.36)

we have:

Y (ω) = jω
x∗

f∗
= jωH(ω) (1.37)

with the following relations for the module:

|Y (ω)| = ω|H(ω)| (1.38)

and for the phase:

θY = θH + 90◦ (1.39)

Reference can also be made to the acceleration a(t) = ẍ(t) = a∗eωt as the output quantity, thus
defining the FRF known as accelerance:

A(ω) =
a∗

f∗
= −ω2H(ω) (1.40)

As we have said, FRFs are complex functions and therefore and therefore cannot be represented
directly on a Cartesian plane; the classic types of representation are:

� module (normally expressed in decibels, dB) as a function of pulsation (in logarithmic
scale) and phase as a function of pulsation (in logarithmic scale), Bode diagram;

� real part as a function of frequency (or pulse) and imaginary part as a function of frequency
(or pulsation); with reference to the case of viscous damping one has

Re[H(ω)] =
k − ω2m

(k − ω2m)2 + ω2c2
e Im[H(ω)] =

−ωc
(k − ω2m)2 + ω2c2

(1.41)

with the trends reported in Fig. 1.1 and Fig. 1.2.

� real part and imaginary part on a polar diagram, with frequency as a parameter, Argand
or Nyquist diagram.4

4In the case of hysteretic damping, Eq. 1.31, real and imaginary part functions are:

HR =
k − ω2m

(k − ω2m)2 + h2
HI =

−h
(k − ω2m)2 + h2

from which the curve in the implicit form is obtained:

H2
R +H2

I = −HI

h

which obviously represents a circumference passing through the origin.
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Figure 1.1: Real part of a FRF of a system with a degree of freedom.

Figure 1.2: Imaginary part of a FRF of a system with a degree of freedom.
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The Argand diagram is widely used for its particular effectiveness in presenting in detail the
area of the FRF in the neighborhood of the resonance frequency, while the points that are far
from the resonance are shifted around the origin of the diagram. In particular, if we consider
the FRF relative to the velocity Y (ω), we see that the modulus as a function of frequency has
a symmetrical diagram with respect to the resonance frequency for small damping.
Argand diagrams related to the FRF of velocity, Y (ω), in the case of viscous damping or to the
FRF of displacement, H(ω), in the case of structural damping are circumferences: this feature
is very useful for the “ curve fitting ” procedure which can be used for the evaluation of modal
parameters.

1.3 Model with multiple degrees of freedom - MDOF

We now move on to extend the considerations seen in the case of a single-degree-of-freedom
model, SDOF , to the greater practical interest case of a multi-degree-of-freedom model, MDOF
(Multi Degree of Freedom).

1.3.1 Undamped case: free vibration, vibration modes and frequencies

For the multi-degrees-of-freedom model the equations of motion, in the non-damped case, are:

Mẍ(t) + Kx(t) = f(t) (1.42)

where M and K are the mass and stiffness matrices, with dimensions n × n if n degrees-of-
freedom are considered in the system 1.42, x(t) and f(t) are the vectors of the displacements
and of the applied, again with n components. The mass matrix is a positive definite matrix
and the stiffness matrix is a positive semi-definite matrix by virtue of the well-known properties
of the homonymous energies associated to these matrices. In particular, for a generic non-zero
vector u, it is observed that:

uTMu > 0 uTKu ≥ 0 (1.43)

It is possible to associate these matrices with the eigenvalues problem : 5

(K− λnM)φ(n) = 0 (1.44)

in which, as usual, the eigenvalues are calculated by solving the characteristic equation:

det(K− λ2M) = 0 (1.45)

and the eigenvectors from the corresponding homogeneous problems given by Eq. 1.44. If Eq.
1.44 is written once with reference to the n−mo eigenvalue and once to the m−mo eigenvalue
and if relations obtained are respectively premultiplied by φ(m)T and φ(n)

T
, we have:

φ(m)T Kφ(n) = λnφ
(m)T Mφ(n) (1.46)

φ(n)
T
Kφ(m) = λmφ

(n)T Mφ(m) (1.47)

5In Appendix ??, free response problems for multi-degree-of-freedom systems are directly addressed from an
algebraic point of view as naturally associated with a standard eigenvalue problem (see Parr. ?? and ??).
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If we subtrac one from each other and by virtue of the symmetry of the two matrices, it follows:

0 = (λn − λm)φ(n)
T
Mφ(m) (1.48)

that is, if the eigenvalues λn and λm are distinct then it must be φ(m)T Mφ(m) = 0, otherwise ,
when they are equal, the product φ(m)T Mφ(m) is a posivie quantity, denoted by mn, due to the
positivity of the matrix M. Therefore:

φ(n)
T
Mφ(m) = δmnmn i.e. ΦTMΦ =


. . .

mn
. . .

 (1.49)

where φ is the matrix having the eigenvectors as columns φ(n).
Let us now consider, instead of Eq. 1.44, its equivalent(

1

λn
K−M

)
φ(n) = 0 (1.50)

By repeating the previous procedur, the following orthogonality relation is obtained:

φ(n)
T
Kφ(m) = δmnkn i.e. ΦTKΦ =


. . .

kn
. . .

 (1.51)

where the generalized stiffnesses kn can only be positive (or null) by virtue of the semi-positivity
of K.
From Eq. 1.44 premultiplied by φ(n)

T
, it is also observed that:

λn =
φ(n)

T
Kφ(n)

φ(n)T Mφ(n)
= ω2

n > 0 (1.52)

i.e. that the eigenvalue λ is positive and will therefore be indicated in the following with ω2
n.

Lt us now show that the vectors φ(n) and constants ωn, just defined, take on the meaning of
natural (angular) modes and frequencies of vibration. If so, by physical definition of natural
modes and frequencies of vibration, the free problem is:

Mẍ + Kx = 0 (1.53)

x(0) = φ(m) (1.54)

ẋ(0) = 0 (1.55)

should provide the solution:

x(t) = φ(m) cos(ωnt) (1.56)

If we use the coordinate change x = Φq and if we premultiply Eq. 1.53 by ΦT, we obtain a
series of ordinary differential equations all decoupled, whose nth is:

mnq̈n + knqn = 0
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whose solution is

qn(t) = q0n cos(ωnt) +
q̇0n
ωn

sin(ωnt)

being x(0) = Φq0 and ẋ = Φq̇0. Reconstructing the original solution and according to the
initial conditions of the problem 1.54 and 1.55 we have Eq. 1.56. Therefore, in the following
we will identify ωn and φ(n) directly as (angular) frequencies and modes of the structure under
consideration (although in the finite element discretization of the structure, they would repre-
sent a disc).
The complete solution of the problem is represented by the matrices of the eigenvalues, indicated
with Ω2 which is a diagonal matrix cointaining on the main diagonal the squared natural pulsa-
tions, and by that of the eigenvectors, indicated with Φ that contains, positioned for columns,
the modal deformations φ(n).
With numerical procedures based on the resolution of Eq. 1.44 it is possible to pass from spatial
matrices, of mass M and stiffness K, to the matrices representing the modal model, indicated
with Ω2 e φ. It is to be remembered that the matrix of natural pulsations, Ω2, is univocally
defined while the matrix of modal deformations, Φ, is not, since the single deformed φ(n) are
defined, but a constant, as self-solutions of the homogeneous problem 1.44.
Several procedures can be used for the normalization of modal deformations, the most signifi-
cant being that of normalization with respect to mass; in this case the eigenvectors, indicated
in the matrix φ∗, are defined by the relations:

Φ∗TMΦ∗ = I (1.57)

Φ∗TKΦ∗ = Ω2 (1.58)

where I, Ω2 are respectively the unitary diagonal matrix and the diagonal matrix of the natural
pulsations; the relationship between the generic normalized mode k and its corresponding non-
normalized mode is given by:

φ∗
(k)

=
1
√
mk

φ(k) (1.59)

1.3.2 Undamped case: forced response

Let us now consider, again for the non-damped model, the forced case, in which there is an
input force vector characterized by components all at the same pulsation ω, but with different
amplitude and phase, defined by the:6

f(t) = f∗ ejωt (1.63)

6This way of proceeding has also been used in parr. ??, ?? and 1.2, it is equivalent to considering the Fourier
transform of Eq. 1.42: following this approach the vectors x∗ and f∗ would represent respectively the Fourier
transform of the output vector x(t) and that of the inputs f(t). In fact, if we consider for example a sinusoidal
input (causal) f(t) = sin(Ωt), the Laplace trasform would be f̃(s) = Ω

s2+Ω2 and therefore the response would be:

x̃(s) = H(s)
Ω

s2 + Ω2
= x̃s(s) + x̃r(s) ' ρ

s− jΩ +
ρ∗

s+ jΩ
(1.60)

whre x̃s indicates the part of the response connected with the (stable) poles of the system and x̃r the part linked
to the input (steady-state response) that we want to consider here. If we look for the residual ρ and ρ∗, we get:

ρ =
H(jΩ)

2j
ρ∗ =

H(−jΩ)

−2j
=
H̄(jΩ)

−2j
= ρ̄ (1.61)
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In this case, the solution of the system 1.42 is of the type:

x(t) = x∗ ejωt (1.64)

where f∗ and x∗ are vectors with n components and complex amplitudes. The equation of
motion 1.42 becomes:

(K− ω2M)x∗ejωt = f∗ejωt (1.65)

a dynamic flexibility matrix can thus be defined, which constitutes a response model in the field
of frequency response functions, FRF , with the:

H(ω) = (K− ω2M)−1 (1.66)

The generic element of the dynamic flexibility matrix can be defined as follows:

Hjk(ω) =
x∗j
f∗k

(1.67)

where f∗m = 0 if m is different from k. As it is evident from Eq. 1.66 it is possible to calculate
the values of the dynamic flexibility matrix, H(ω), for each pulsation ω, if the matrices M and
K, belonging the spatial model, are known. This procedure requires the inversion of a matrix,
generally of large dimensions, for each value of ω; this has several limitations because of the
computational effort required if the number of degrees of freedom increases. In addition, the
matrix H(ω) must be calculated all at once and no information about the properties of the
individual FRF is obtained.
A different approach can be used, which is generally convenient, whereby the dynamic flexibility
matrix H(ω) is calculated as a function of the modal model instead of the spatial model. From
Eq. 1.66 we have:

(K− ω2M) = H(ω)−1 (1.68)

If we pre-multiply by the transposed matrix of eigenvectors, normalized with respect to mass,
and post-multiply by the matrix of normalized eigenvectors, we have:

Φ∗T (K− ω2M)Φ∗ = Φ∗T M(ω)−1 Φ∗ (1.69)

Using the orthogonality properties, Eq. 1.57 and 1.58, Eq. 1.69 becomes:
. . .

ω2
nk
− ω2

. . .

 = Φ∗TH(ω)−1Φ∗ (1.70)

It the domain of time, we would have: (H(−jΩ) ≡ H̄(jΩ))

xr(t) = L−1

[
H(jΩ)

2j(s− jΩ)
− H̄(jΩ)

2j(s+ jΩ)

]
= |H(jΩ)| sin

(
Ωt+H(jΩ)

6
)

(1.62)

where H(jΩ)
6

indicates the phase of the complex number H(jΩ). The frequency response function H(jω)
represents in a (complex) modulus and phase the module and phase of the system’s response to a simple harmonic
input of pulse Ω and unit amplitude and zero phase.
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from which if we reverse, pre-multiply by the matrix Φ∗ and post-multiply by the matrix Φ∗
T

,
we get:

H(ω) = Φ∗


. . .

1

ω2
nk
− ω2

. . .

 Φ∗T (1.71)

From relation 1.71 we see that the dynamic flexibility matrix is a symmetrical matrix, in fact it
results from the product of the matrix Φ∗,for a diagonal matrix,

(
Ω2 − ω2I

)−1
, for its transpose,

Φ∗
T

; on the other hand, the matrix H(ω) must be symmetrical according to the principle of
reciprocity (Betti’s theorem):

Hjk(ω) =
x∗j
f∗k

= Hkj(ω) =
x∗k
f∗j

(1.72)

Eq. 1.71 allows to calculate the single element of the dynamic flexibility matrix from:

Hjk(ω) =
n∑
r=1

φ
(r)
j φ

(r)
k

mr(ω2
nr
− ω2)

(1.73)

where the symbol φ
(r)
k indicates the k− th component of the r− th mode; the single element of

the flexibility matrix can therefore also be written synthetically as:

Hjk(ω) =
n∑
k=1

A
(r)
jk

ω2
nr
− ω2

(1.74)

where A
(r)
jk is the modal constant of the r − th mode relative to j and k degrees of freedom.

1.3.3 Proportional damping

Let us now consider a special case of damping which has the advantage of great simplicity of
analysis: the key point is that with this damping model the fundamental modes to be considered
are practically the same as those of the non-damped model, in fact the modal deformations are
identical and the natural frequencies are numerically very close. Therefore it is possible to derive
the modal properties of a structure represented with a proportional damping starting from the
study of the non-damped model.
In the presence of damping, the general equation of motion is:7

Mẍ + Cẋ + Kx = f(t) (1.76)

7If we assume that the effect of the damping is to dissipate the elastic and kinetic energy of the vibrating
system, then, in the case of free vibration, Eq. 1.76 pre-multiplied for xT becomes:

d

dt

(
1

2
ẋTMẋ +

1

2
xTKx

)
= −ẋTCẋ (1.75)

since the sum of elastic energy and kinetic energy must decrease over time for each state condition, Eq. 1.75
implies that C must be positive definite matrix.
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� Let us consider the damping matrix as proportional to the stiffness matrix, then:

C = βK (1.77)

if we premultiply the damping matrix by the transpose of the eigenvectors matrix of the
non-damped system and if we postmultiply it by the eigenvectors matrix of the non-damped
system, we get:

ΦTCΦ = βΦTKΦ = β


. . .

kk
. . .

 =


. . .

ck
. . .

 (1.78)

where the elements ck are the dampings of the individual modes of the model. The
matrix obtained by performing this operation is diagonal as a result of the proportionality
condition, 1.77; this indicates that the modal deformations of the non-damped system can
be used for the system with proportional damping.
Let us consider the system 1.76 in the case of a free response. Multiplying by the transpose
of the eigenvector matrix of the non-damped system we have:

ΦTMẍ + ΦTCẋ + ΦTKx = 0 (1.79)

Then replacing the physical coordinates with the modal coordinates, q, with the position:

x = Φ q (1.80)

we get: 
. . .

mk
. . .

 q̈ +


. . .

ck
. . .

 q̇ +


. . .

kk
. . .

q = 0 (1.81)

in which ck := βkk. For the k − th mode, it becomes:

mkq̈k + ckq̇k + kkqk = 0 (1.82)

this is the equation of a single-degree-of-freedosystem (see par. 1.3) which has a complex
natural frequency with an oscillatory part given by:

ω′nk
= ωnk

√
1− ζ2k (1.83)

where ωnk
is the natural damping of the k − th mode, given by ω2

nk
= kk/mk, and ζk is

the dimensionless damping coefficient of the k− th mode, given by ζk = ck/2
√
kkmk. The

exponential decay is given by:

σk = ζkωnk
(1.84)

In analogy to what was seen for the non-damped case, in par. 1.3.2, the following expression
for the flexibility matrix or frequency response function matrix for the forced system is
obtained:

H(ω) =
[
K + jωC− ω2M

]−1
(1.85)
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and therefore the generic term of the flexibility matrix is:

Hjk(ω) =
n∑
r=1

φ
(r)
j φ

(r)
k

kr −mrω2 + jωcr
=

n∑
r=1

φ
(r)∗

j φ
(r)∗

k

ω2
r − ω2 + jωωrζr

(1.86)

with ζr = cr/2
√
krmr, which is quite similar to the analogous expression 1.73 obtained for

the non-damped case, although in this case the term Hjk(ω) is complex.

� A special case of a damping matrix proportional to the stiffness matrix has been considered.
Actually, an equivalent situation occurs if the damping matrix is proportional to the mass
matrix of the system, according to the following:

C = αM (1.87)

More generally, in the case of proportional damping, it is considered that the damping
matrix may be proportional to a linear combination of mass and stiffness matrices:

C = βK + αM (1.88)

from which

ck = βkk + αmk (1.89)

and the damped system will still have eigenvalues of the type 1.83 and eigenvectors that are
equal to those of the corresponding non-damped system. This model of proportional damp-
ing, in addition to the advantage of simplicity, is of practical interest since the physical
damping mechanisms are actually related to the stiffness characteristics of the structure,
as far as the internal damping of the material is concerned, and to the mass characteristics,
as far as friction damping is concerned.
However, it should be observed that in the aforementioned cases of damping proportional
to stiffness and mass, the poles of the damped system (see also App. B.3) are given by:

sn1,2 = −ζnωn ± jωn
√

1− ζ2n (1.90)

where ζr = (αmr + βkr)/2
√
krmr, which holds also for single-degree-of-freedom systems

with viscous damping.

� Quite similar considerations can be developed for a multiple-degrees-of-freedom model,
but with hysteresis damping (see par. 1.2); in this case the general equation of motion is
written (in the mixed time-frequency form):

Mẍ + (K + jH)x = f (1.91)

Let us consider the hysteresis damping matrix H as proportional to the mass and stiffness
matrices:

H = βK + αM (1.92)
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also in this case the eigenvectors of the damped system are equal to those of the non-
damped system and the following formula applies to the complex eigenvalues:

s2k = −ω2
nk

(1 + jηk) (1.93)

where ω2
nk

= kk/mk and the loss factors ηk = β + α/ω2
nk

; the generic term of the dynamic
flexibility matrix is:

Hjk(ω) =

n∑
r=1

φ
(r)
j φ

(r)
k

kr − ω2mr + jηrkr
(1.94)

1.3.4 Hysteresis damping: general case

The model that considers damping as proportional to mass and stiffness is a special case, al-
though very important from a practical point of view; Therefore, the more general case of
damping must also be considered in order to better understand the experimental data obtained
from tests on structures whose behaviour does not necessarily follow the proportionality model
for damping.
Let us now refer to the general case of hysteresis damping:

Mẍ + Kx + jHx = f (1.95)

where H is a symmetrical matrix. In the case of a free response (f = 0), the solution is of the
type:

x(t) = φ eµt (1.96)

we have a self-resolution problem represented by two matrices µ2 and Φ which contain the
eigenvalues µn and the eigenvectors φ(n). In this case the two matrices are complex and the
modal deformations are represented in complex form; the k − th eigenvalue can be written as:

µ2k = −ω2
nk

(1 + jηk) (1.97)

where ωnk
is close to the natural pulsation of the non-damped system and ηk indicates the loss

factor for the k − th mode; it is observed that µk that appears in Eq. 1.97 is different from the
natural pulsation of the non-damped mode, even if numerically the values are very close.
Modal deformations φ(k) are complex, this means that the amplitude of each degree of freedom
of the system is characterized with modulus and phase, while in the non-damped case or with
proportional damping, there is always a phase that can only assume the values of 0 or 180
degrees. In the more general case of damping, and therefore with non-proportional damping,
there are complex modes in which the phase varies from one degree of freedom to another and
can assume any value.
In the case of complex modes, the orthogonality properties seen in the case of real modes still
apply::

ΦTMΦ =


. . .

mk
. . .

 (1.98)
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ΦT (K + jH) Φ =


. . .

kk
. . .

 (1.99)

the generalized mass and stiffness, mk, kk are naturally complex and depend on the type of
normalization chosen for the modal deformations, while the eigenvalues (see Eq. 1.97) are
related with the mk and kk from:

−µ2k = kk/mk (1.100)

In the case of forced response, for excitation f = f∗ejωt and harmonic response x = x∗ejωt the
equation of motion is:

(K + jH− ω2M)x∗ejωt = f∗ejωt (1.101)

From Eq. 1.101, the following expression for the dynamic flexibility matrix is obtained:

H(ω) =
(
K + jH− ω2M

)−1
(1.102)

Proceeding in analogy to what was seen previously in par. 1.3.2, if we express the dynamic
flexibility matrix in terms of the matrices of the modal model, instead of the spatial model
matrices as in 1.102, we obtain:

H(ω) = Φ


. . .

1

−µ2k − ω2

. . .

ΦT (1.103)

and for the single term of the matrix we have for the general case of non-unitary generalized
masses:

Hjk(ω) =
n∑
r=1

φ
(r)
j φ

(r)
k

mr
(
ω2
nr
− ω2 + jηrω2

nr

) (1.104)

In Eq. 1.104, unlike what was seen previously, both the numerator and the denominator are
complex, because the eigenvectors are complex. This is the essential difference from the case
where damping is considered to be proportional to mass or stiffness matrices.

1.3.5 Viscous damping: general case

The equation of motion for a multi-degree freedom system with viscous damping in the case of
free vibration is:

Mẍ + Cẋ + Kx = 0 (1.105)

with C symmetric and positive matrix. If we look for solutions of the type:

x(t) = φ est (1.106)
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Eq. 1.105 becomes: (
s2M + sC + K

)
φ = 0 (1.107)

The solution of Eq. 1.107 consists of the solution of an eigenvalue problem in the form:(
s2kM + skC + K

)
φ(k) = 0 k = 1, 2, ..., n (1.108)

which is different from the one considered in the case of hysteresis damping. In fact, as shown by
Eq. 1.108, there are 2n eigenvalues, if n indicates the number of degrees of freedom in the system
1.105, instead of the N eigenvalues considered in the case of hysteresis; but these 2n eigenvalues
are pairwise conjugate complexes: of course each eigenvalue corresponds to an eigenvector and
the eigenvectors are pairwise conjugate complexes as well. These considerations, as well as the
others that follow, are demonstrated in App. ?? (see parr. ?? and ??) on a purely algebraic
basis.
The solution of the system 1.107 is therefore given by 2n complex conjugated eigenvalues and
by 2n complex conjugated eigenvectors indicated with sk, s

∗
k and φ(k), φ∗

(k)
respectively. The

eigenvalues can be written as:

sk = ωnk

(
−ζk + j

√
1− ζ2k

)
(1.109)

where ωnk
is the natural pulsation and ζk is the damping of the k − th mode.

Also in this case there are orthogonality properties, but they are different from the classic ones;
eigenvalues and eigenvectors satisfy Eq. 1.108, if you pre-multiply this relation by φ(q)

T
we get:

φ(q)
T

(s2kM + skC + K)φ(k) = 0 (1.110)

Eq. 1.108 can be written for the q − th mode as:

(s2qM + sqC + K)φ(q) = 0 (1.111)

If we calculate the transpose of 1.111, taking into account that the matrices of mass, M, of
stiffness, K, of damping, C, are symmetric matrices we get:

φ(q)
T

(s2qM + sqC + K) = 0 (1.112)

If we post-multiply this expression by φ(k) and subtract the relation thus obtained from Eq.
1.110, we get:

(s2k − s2q)φ(q)
T
Mφ(k) + (sk − sq)φ(q)

T
Cφ(k) = 0 (1.113)

In the case in which the two roots sk and sq are different, a first condition of orthogonality is
obtained from this expression:

(sk + sq)φ
(q)TMφ(k) + φ(q)

T
Cφ(k) = 0 (1.114)

A second condition of orthogonality can be obtained from 1.108 and 1.111. If we multiply the
former by sqφ

(q)T and the latter by skφ
(k)T and we subtract one from each other, we get:

sksqφ
(q)TMφ(k) − φ(q)TKφ(k) = 0 (1.115)
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The conditions 1.114 and 1.115 are the orthogonality conditions in the general case of viscous
damping, when the hypothesis of proportional damping is not used; as we can see, these are
more complex conditions than the classic ones.
Let us now consider the case in which the modes k and q constitute a pair of conjugate complex
modes, we have:

sk = ωnk

(
−ζk + j

√
1− ζ2k

)
sq = ωnk

(
−ζk − j

√
1− ζ2k

)
(1.116)

the corresponding eigenvectors are complex conjugates, φ(q) = φ(k)
∗
; considering these relation-

ships in the first orthogonality condition, 1.114, we get:

−2ωnk
ζkφ

(k)∗TMφ(k) + φ(k)
∗T

Cφ(k) = 0 (1.117)

from which the first condition of orthogonality is obtained:

2ωnk
ζk =

φ(k)
∗T

Cφ(k)

φ(k)∗TMφ(k)
=

ck
mk

(1.118)

Proceeding in an similar manner for the second condition of orthogonality, 1.115, we obtain:

ω2
nk
φ(k)

∗T
Mφ(k) − φ(k)∗TKφ(k) = 0 (1.119)

from which the second condition of orthogonality is obtained:

ω2
nk

=
φ(k)

∗T
Kφ(k)

φ(k)∗TMφ(k)
=

kk
mk

(1.120)

mk, kk and ck, appearing in the conditions 1.118 and 1.120, are again referred to as the modal
mass, stiffness and damping, even if their meaning is different from that corresponding to the
case of proportional damping.
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