
Chapter 1

Experimental Structural Dynamics -
Acquisition of FRFs

1.1 Experimental tests of dynamic analysis

The experimental tests of dynamic analysis, which can be carried out on single structural ele-
ments and also on an aircraft or on a complete space system, have as their main objective the
evaluation of the response of the structure to stresses and the possibility of verifying and, if
necessary, of developing a numerical model to precidt the dynamic behavior of the structure. In
general, however, experimentation is conducted with input stresses that do not correspond to
any typical working condition.
The term modal analysis refers to the experimental process of acquiring data that enables a
numerical description of the dynamic behavior of a structure to be determined.
Although the fundamental purpose of a dynamic experimentation is always to obtain a numerical
model of the structure, there are differences which relate to the intended use of the model itself.
These differences are important from an experimental point of view because they determine the
precision required for experimentation and thus the “difficulty” and ultimately the “ cost”. The
model can be used for:

� validation of the numerical model of the structure: in this case it is necessary to obtain
a very precise evaluation of the fundamental frequencies and a description of the modal
deformations which is sufficient to identify the type of mode; as far as the damping coeffi-
cients are concerned, a comparison with the values obtained from a numerical prediction
is generally not possible, but only with rough estimates obtained by analogy of known
values for structures with similar characteristics;

� search for the causes of the differences between the numerical model and the experimental
data: compared to the previous case, a more accurate evaluation of the modal deformations
and the acquisition of a higher number of fundamental modes are required;

� identification of a numerical model to be used also for substructuring techniques, struc-
tural modification, for the identification of the forces acting on the structure or for the
identification of damages occurring during the working life: in all these cases, a greater
level of precision in the measurements and the determination of an even higher number of
fundamental modes are required.
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In the general case the dynamic model of a structure is given by a discrete system with multiple
degrees of freedom, it represents an approximation of the actual situation which is that of a
continuous structure and therefore characterized by an infinite number of degrees of freedom; in
the case of viscous damping, the equation of the system with n degrees of freedom is:

Mẍ + Cẋ + Kx = f(t) (1.1)

where x is a vector, of n components, which includes the degrees of freedom chosen for the
representation of the structure (from the experimental point of view they are the measurement
points), f(t) is the vector of the forces acting on the structure, M is the mass matrix, n × n,
and analogously C and K are the viscous damping and stiffness matrices, n× n.
As seen in Cap. ??, three types of dynamic description can be defined:

� spatial, K, M, C matrices;

� modal, Φ, Ω2, Λ2 matrices;

� of frequency response functions, H(ω) matrix.

In the field of the experimental technique of dynamic analysis, reference will essentially be made
to a methodology that concerns the determination of the frequency response functions, indicated
with FRF , by means of the excitation of the structure at a single point and the detection of the
output at another measurement point (it is also possible a different situation in which both the
input and the output can be relative to more than one point of the structure); experimentation
directly provides a response model in terms of the frequency response functions. From the eval-
uation of an appropriate number of FRFs it is possible to pass to the modal or spatial model.
The input signalby connecting the structure with a “ shaker ” or more simply with an impulsive
input, generally obtained with a hammer equipped with a load cell, while the transducer gener-
ally used for the output quantity is an accelerometer which must be connected to the structure:
it constitutes therefore an “alteration” of the structure itself. This alteration must be minimised,
therefore the mass of the accelerometer must be as small as possible; this requirement is, as said,
compatible with the use of piezoelectric accelerometers.
Also in the application of excitation forces there is an alteration of the structure, in particular
in the case of the use of “shakers”.

1.2 Determination of FRFs with general input

Reference is now made to the more general case in which the input signal and therefore the
response signal are not simple harmonics.

1.2.1 Periodic input

In this case the input signal is periodic with period T . Let us consider for simplicity a system
with a single input and a single output (SISO, Single Input Single Output); the input signal can
be expressed with a Fourier series development, in fact a periodic function with period T can
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be developed as follows:1

f(t) =
+∞∑

k=−∞
f∗ke

jωkt (1.4)

with ωk = 2πk/T .
The response signal x(t) can be evaluated by considering the meaning of the FRF and therefore
using the FRF calculated at the frequencies that are present in the input signal, f(t), as shown
in 1.4:

x(t) =
+∞∑

k=−∞
x∗ke

jωkt =
+∞∑

k=−∞
H(ωk)f

∗
ke
jωkt (1.5)

Of course, the response signal contains only those frequencies which are included in the input
signal: therefore the response signal x(t) is periodic, with the same period T as the input signal,
but has a different form because the FRF has different values depending on the frequency.
To determine the FRF in the case of a periodic input it is therefore necessary to calculate the
Fourier series developments of the input and output signals: the components of the input and
output functions for the same discrete frequency values that are integer multiples of 2π/T are
thus obtained. From these components we derive the FRFs at the only discrete frequencies that
are multiples of 2π/T :

H(ωk) =
x∗k
f∗k

(1.6)

From 1.6 the FRFs can be obtained at the frequency values corresponding to multiples of the
input signal. This procedure can of course be extended for multiple input and multiple output
systems (MIMO, Multiple Input Multiple Output), if there are several measurement points. In
this case, the generic term of the FRF matrix is:

Hij(ωk) =
x∗ki
f∗kj

(1.7)

for which the periodic input must be applied at the j − th point j − imo and must zero at all
other points.

1The 1.4 is the complex (exponential) form of the Fourier series: the coefficients f∗k are given by the expression:

f∗k =
1

T

∫ T

0

f(t) e−jωktdt (1.2)

By expressing the complex exponential with trigonometric functions using Euler’s formula, we get this expression
for the monolateral Fourier series:

f(t) =
a0
2

+

+∞∑
k=1

[ak cos(ωkt) + bk sin(ωkt)] (1.3)
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1.2.2 Impulsive input

Let us consider again a system with single input and single output, SISO. In the case in which
the input signal is of the generic type (at the impulsive limit), it can be considered that the
Direchlet condition is respected: ∫ ∞

−∞
|f(t)|dt <∞ (1.8)

and it is therefore possible to define and calculate the Fourier transform of this signal defined
as (the Fourier-transformed quantities are indicated with the symbol )̃:

f̃(ω) =

∫ ∞
−∞

f(t)e−jωtdt (1.9)

at each pulse ω, we can write for the response signal:

x̃(ω) = H(ω) f̃(ω) (1.10)

where H(ω) indicates the FRF. The response signal x(t) can therefore be obtained from the
inverse Fourier transform of the relation 1.10:

x(t) =
1

2π

∫ ∞
−∞

H(ω)f̃(ω)ejωtdω (1.11)

FRFs can therefore be obtained from dynamic analysis tests with impulsive excitation: it is a
matter of calculating the Fourier transforms of the input and output signals and obtaining the
FRFs as a ratio of these two functions:

H(ω) = x̃(ω)/f̃(ω) (1.12)

For systems with several inputs and outputs, we will still have

Hij(ω) =
x̃i(ω)

f̃j(ω)
(1.13)

in which the Fourier transformed vector of the input f̃i(ω) (i = 1, 2, ..., n) is non-zero only at
the j − th measurement point. From a numerical point of view, the Fourier transforms of the
input and response signals are calculated by evaluating the discrete Fourier transforms, with a
numerical process referred to as FFT , Fast Fourier Transform; this numerical procedure implies
that the signal is treated as a periodic signal.
The case of impulsive excitation can be treated differently by evaluating the response of a system
to a unitary impulse (f(t) = δ(t)), Duhamel’s method. If we indicate with h(t− τ) the impulse
response function and consider a generic input function f(t), it is possible to express it through
a linear combination of impulses f(τ)dτ . The response of the system is given by:

x(t) =

∫ ∞
−∞

h(t− τ)f(τ)dτ (1.14)

where h(t− τ) = 0 for t < τ . The Fourier transform of a unitary pulse δ(t) is:

f̃(ω) =

∫ ∞
−∞

f(t)e−jωtdt =

∫ ∞
−∞

δ(t)e−jωtdt = 1 (1.15)
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placing 1.15 in 1.11, we have:

x(t)δ = h(t) =
1

2π

∫ ∞
−∞

H(ω)f̃(ω)ejωtdω =
1

2π

∫ ∞
−∞

H(ω)ejωtdω (1.16)

as we can see from 1.16, the impulsive response h(t) and the FRF of the system H(ω) are a pair
of Fourier transforms; this means that the impulsive response of the system, h(t), is obtained
from the anti-Fourier transform of the FRF, i.e. of the H(ω).
From this correspondence between impulsive response and FRF, it can be seen that it is possible
to express the impulse response function with a series development on a modal basis, as it
happens for FRF; in fact from:

Hij(ω) =
∑
r

Hr
ij(ω) =

∑
r

−
φ
(r)
i φ

(r)
j

−mrω2 + kr + jωcr
(1.17)

we have correspondingly:

hij(t) =
∑
r

hrij(t) (1.18)

1.2.3 Random input

In this case, which is very important for the possibilities it offers in experimentation, the input
signal and therefore the output signal are random: the Dirichlet condition is not respected and
therefore it is not possible to apply the definition of the Fourier transform for input and output
signals.
A random signal is defined with a statistical approach since the single signal, unlike in the
deterministic field, is not significant. The random character, in modal analysis, refers to the
fact that a series of experiments, even if carried out in an apparently equal manner and under
the same circumstances, leads to different results. Therefore the result of a single test is not
sufficient to represent the measure, but a statistical description of the results is required.
Different methods must be used to describe the signals: this can be done in the time domain
by means of the correlation function and in the frequency domain by means of the spectral
density function, PSD (Power Spectral Density), see App. ?? for theoretical remarks on random
processes.
A random signal is defined as stationary if its statistical properties, in particular the average, do
not change over time. The avarage of an ergodic random signal, i.e. with time averages equal to
the averages calculated on the set of samples and thus such that its properties can be assessed
by a single recording of sufficiently large duration, is defined by:

x = lim
T→∞

1

T

∫ T

0
x(t)dt (1.19)

The mean square value of the random signal is defined by:

x2 = lim
T→∞

1

T

∫ T

0
x2(t)dt (1.20)

In the case of random signals this value is also referred to as variance and gives an indication of
the magnitude of variation of the signal x(t).

5



Arelated quantity is the square root of the variance, the square root of the mean square value
xrms (root mean square):

xrms =
√
x2 (1.21)

Another important index in the field of random variables is the measure of the variation over
time of the signal, which allows to evaluate the size of the statistical sample of the signal to be
collected. The autocorrelation function, indicated with Rxx(τ), is defined by:

Rxx(τ) = lim
T→∞

1

T

∫ T

0
x(t)x(t+ τ)dt (1.22)

it gives an indication on the speed of variation of the signal x(t) and is only a function of τ , the
time difference, in the case of stationary random signals.
The correlation function between the signals f(t) and g(t) (or autocorrelation if referred to the
same signal) has the physical meaning of mean value of the product of the function f(t) for a
function g(t) shifted in time: f(t) ∗ g(t + τ); it is always a function of time that responds
however to the conditions required to define its Fourier transform; for example in the case of
autocorrelation for the signal f(t) we have:

Rff (τ) = E [f(t) f(t+ τ)] (1.23)

where the symbol E [...] stands for the expected value of the quantity in brackets: under the
hypothesis that the signal is stationary from a statistical point of view (i.e., that all the proba-
bility characteristics are independent of temporal translations) and is also ergodic, i.e., that the
time averages are equal to the averages calculated on the set of samples, 1.23 can be expressed
as:

Rff (τ) = E [f(t) f(t+ τ)] = lim
T→∞

1

T

∫ T

0
f(t) f(t+ τ)dt (1.24)

and therefore each stochastic function f(t) is completely representative of the random process.
The Fourier transform of the autocorrelation function, indicated by 1.23, defines a spectral
self-density function:

Sff (ω) =

∫ ∞
−∞

Rff (τ)e−jωτdτ (1.25)

through this spectral density function, a description in the frequency domain of the time function
f(t) is obtained. The random signal characteristic of f(t) does not allow classical definition of
Fourier transform o be applied directly to the function itself.
The definitions given in 1.23, 1.25 extend naturally to the case of two functions x(t), f(t) for
which a correlation or cross-correlation function is defined:

Rxf (τ) = E [x(t) f(t+ τ)] = lim
T→∞

1

T

∫ T

0
x(t) f(t+ r)dt (1.26)

and consequently a spectral density or cross-density spectral function is defined:

Sxf (ω) =

∫ ∞
−∞

Rxf (τ)e−jωτdτ (1.27)
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It is observed that the correlation functions defined by 1.23, 1.26 are real functions 2 and also
the spectral self-density functions are real functions while the spectral cross-density functions
are, in general, complex functions but such that it is:

Sxf (ω) = S∗fx(ω) (1.28)

where ∗ indicates the complex conjugate.
In this way we have defined, through correlation operations and Fourier transforms on the
correlation functions, the functions that allow us to deal with random signals. Then there is a
relation that connects the spectral auto-density functions of the input and output signals with
the FRF of the system:

Sxx(ω) = |H(ω)|2Sff (ω) (1.29)

This relationship alone is not sufficient for the evaluation of the FRF of the system as it only
provides information about the modulus of H(ω), therefore further relationships involving also
the spectral cross-density functions must be used. As mentioned above, the spectral cross-density
functions are complex and therefore allow us to derive the H(ω) in complex form:

Sfx(ω) = H(ω)Sff (ω) (1.30)

Sxx(ω) = H(ω)Sxf (ω) (1.31)

Relations 1.30, 1.31 allow to derive the FRF of the system starting from experimental measure-
ments carried out with a random input signal; from these two relations we obtain two possible
estimates for the function H(ω) and from the comparison of these two different estimates the
quality of the obtained experimental data can also be evaluated (see beyond Sec. 1.3.4).

1.3 Use of different inputs

Experimental modal analysis tests can be performed with different types of input signals; they
have some advantages and some drawbacks that are presented in the following subparagraphs.

1.3.1 Sinusoidal input with discrete frequency variation

In this case the input signal is simple harmonic with fixed amplitude and frequency and the
FRF is measured point by point for each frequency value considered, see par. 1.2.1.
So, to obtain a single FRF of the system, the frequency of the input signal has to be varied in a
discrete way. Of course, the measurement requires that steady-state conditions are reached when
passing from one frequency to another, and this can take a long time to measure. In practice, the
time required becomes critical around a resonance frequency when the modal damping coefficient
is very low.
An advantage offered by the use of this type of input lies in the possibility of “ spacing ” the
frequency in the measurement in the way considered most appropriate: thus it is possible to
collect few frequency measurement points for frequencies that are far from the resonance points

2Note that for example, the Rff defined with the 1.24 is an even function, so doing the transform 1.25 with
e−jωt = cos(ωt)− j sin(ωt)e have as unique by integrating not Rff cos(ωt) that give rise to a Sff real.
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of the system and to concentrate the maximum number of the frequency measurement around
the resonance points, thus obtaining the most significant data for the subsequent evaluation of
modal parameters.
Measuring with this type of input involves a two-step process:

� a first exploration is conducted with a large frequency range and aims to identify resonance
points;

� the second phase is carried out around the resonance peaks with very small frequency
increments in order to collect the most significant data relating to the individual modes.

1.3.2 Sinusoidal input with continuous frequency variation

It is a case similar to the previous one, the input signal is still pure harmonic, but the frequency
variation of the signal is continuous (see parr. 1.2.1 and 1.2.2); of course, it must always be
verified that this frequency variation is sufficiently to maintai stationary conditions in the mea-
surement.
In fact, a too high frequency change rate leads to very significant distortions in the FRF eval-
uation, the admissible rate of variation is conditioned by the modal damping coefficient values;
special standards set the maximum values of the rate of frequency variation.
With this type of input a continuous frequency “brushing” is obtained from a fixed initial and
final frequency value.

1.3.3 Periodic input

In the case of a periodic input signal, we have a discrete set of frequencies contained in the
signal itself. From the evaluation of the Fourier transforms of the input and output signals,
which are periodic (v. par. 1.2.1), we get the FRFs of the system from the relations 1.6 and
1.7. In order to obtain periodic input signals it is possible to use deterministic signals, such as
square waves, or pseudo-random signals. An important advantage offered by this type of input,
compared to the previous case of a simple harmonic input, is given by its periodicity that allows
to obtain from a single measurement the information relative to a frequency range, chosen by
the operator, with a fixed frequency increase.

1.3.4 Random input

In the case of random input, we have, as we have seen, three different relationships that allow
us to evaluate the FRF of the system:

Sxx(ω) = |H(ω)|2Sff (ω) (1.32)

Sfx(ω) = H(ω)Sff (ω) (1.33)

Sxx(ω) = H(ω)Sxf (ω) (1.34)

where H(ω) denotes the FRF of the system and the functions S(ω) denote the spectral density
functions, PSD.
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The basic measurement tool in modal analysis is typically a two-channel analyzer. It is able to
calculate in an approximate form with different numerical procedures the different functions that
appear in 1.32, 1.33, 1.34. In all cases, spectral density functions cannot be evaluated exactly if
one has, as is obviously inevitable in measurement, a data set of finite time duration.
In the case of a random input signal, FRFs can be evaluated with different estimates; if we
indicate with H1(ω) the FRF obtained from 1.33, we have:

H1(ω) = Sfx(ω)/Sff (ω) (1.35)

if we indicate with H2(ω) the FRF obtained from the 1.34, we have:

H2(ω) = Sxx(ω)/Sxf (ω) (1.36)

of course the functions H1(ω), H2(ω) that are calculated from different experimental data will
have different values and not exactly equal to the ones they should theoretically assume. Thus,
to assess the reliability of the measurement process, a coherence function, indicated with γ, is
defined by:

γ2 = H1(ω)/H2(ω) =
Sfx(ω)Sxf (ω)

Sff (ω)Sxx(ω)
(1.37)

It can be verified that this function γ must always have a value less than or equal to one and
that γ = 1 corresponds to the ideal conditions of measurement in which the frequency response
functions H1(ω) and H2(ω) are equal.
Of course, the presence of noise in the input and output signals disturbs the measurement:
in the neighborhood of a resonance frequency the effect of the noise is very important on the
input signal and therefore it alters the spectral density function relative to the input, Sff (ω),
while in the neighborhood of an anti-resonance points, where the response signal is reduced to
a minimum, the noise has a greater effect on the response signal and therefore it alters mainly
the spectral density function of the output signal Sxx(ω).
Hence, around resonance points the H2(ω) function is likely to give the most reliable estimate
for the measurement, while on the contrary around anti-resonance points the H1(ω) function is
likely to give the best estimate.
It is observed that very low values of the coherence function γ, which make the measurement
unacceptable, can be caused by a non-linear behavior of the structure and therefore can be
considered as a possible index of non-linear behavior; another cause for too low values of the
coherence function is connected with an insufficient frequency resolution, which depends on
the digitization process and therefore on the frequency measurement points that are available,
especially in the modal analysis of structures characterized by very small damping coefficient
values. This second observation suggests a repetition of the measurement with the use of a
higher number of frequency sampling points.

1.3.5 Impulsive input

In this case the input signal can be obtained in a different way with:

� a rapid change in frequency of a sinusoidal signal, which is indicated with the term chirp;

� a rectangular pulse over time.
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The first is the case of a harmonic excitation with a frequency varying from a minimum value,
fmin, to a maximum value, fmax. In this way, it is possible to obtain a very precise control over
both the limits of the frequencies contained in the impulsive signal and the amplitudes of the
signal, and it is also possible to obtain a high energy and therefore a very high signal-to-noise
ratio.
In the second case the impulsive signal is obtained with an excitation of limited duration, for
example with the use of a “hammer” with a load cell that allows to measure the force transmitted
to the structure: the control of the frequency band of the signal and of its amplitude is much
less direct and precise than in the case of the chirp, moreover the available energy is limited,
but there is the advantage of using a very simple instrumentation.
From this impulsive excitation we can calculate the Fourier transforms for the input and the
output , with the numerical use of the FFT, and then we can derive the FRFs from 1.12 and
1.13. In the case of random input, it is also possible to use the previously defined relations 1.30,
1.31 and then go through the calculation of the correlation functions and of the spectral density
functions.
Modal analysis tests based on the use of the impulsive type of input have some advantages
both with regard to the simplicity and versatility of the instrumentation and with regard to
the measurement technique, but also have several drawbacks in particular with regard to the
precision of the measured data, generally lower than that obtainable with other types of input,
of the measured data and the difficulty of use on large structures.

1.3.6 The excitation system

The excitation system can have different structures, but basically it is a shaker (electromagnetic
or electro-hydraulic type) or a hammer with a load cell.

� In the case of electromagnetic shaker, the excitation signal can be random, sinusoidal with
continuous frequency variation and many other types. The electromagnetic shaker consists
of a coil placed around a shaft in a magnetic field: by applying an alternating current, a
force is applied to the shaker shaft, which in turn transfers the force to the structure.
Of course, this excitation system must be connected to the structure under test and there
is therefore an insertion effect which can be relevant according to the masses involved.
This effect is reduced by connecting the shaker to the structure via a stinger, which is
a short, thin rod (often made of steel or nylon): this rod isolates the shaker from the
structure, reduces the effect of added mass effect and allows to control the direction of
force application.

� The use of the hammer with load cell avoids the issues of added mass and allows a much
faster experimentation. It is a hammer with a force transducer on the impact section: it
is used to give the structure a broadband impulse excitation which is the larger the longer
the time duration of the impulse.3 In Fig. 1.1 the trend as a function of time and the
trend as a function of frequency of a typical impulse are shown. The peak value of the

3This statement can be easily proved by considering a “quasi-pulse” δb consisting of a rectangular pulse centered
in the origin of times with “base ” b and height 1/b so that it has integral equal to one. Its Fourier transform is
equal to:

F [δb] =

∫ b/2

−b/2

1

b
e−jωtdt =

1

−jbω
[
e−jωb/2 − ejωb/2

]
=

2

bω
sin
(
ω
b

2

)
(1.38)
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Figure 1.1: Impulsive input over time and its Fourier transform.

force depends on the mass of the hammer and the impact velocity: the load cell placed on
the impact head allows the impact force to be measured.
The duration of the impulse, its frequency content and therefore the maximum excitation
frequency, depend on the mass and stiffness of the hammer and of the structure under
test.
The maximum excitation frequency decreases as the mass of the hammer increases and
increases as the stiffness of the hammer tip increases.
Although the simplicity of using the hammer is obvious, it may be impossible to give a
structure, in particular a large one, sufficient energy for excitation and also the direction
of application of the force may be uncertain.

1.4 Determination of modal parameters from FRFs: SDOF hy-
pothesis

The determination of the modal parameters, which are the natural frequencies, the modal damp-
ing coefficients and the modal deformations, from experimental data, which are the FRFs, re-
quires a preliminary choice between a simple approach, based on the idea that it is possible
to isolate the single mode in the neighborhood of the resonance frequency and then consider a
modal reconstruction based on the single degree of freedom model (SDOF), and a more general
approach, which is certainly necessary in the case of coupled modes, based on a modal recon-
struction with a multi degree of freedom model (MDOF). In other words, if we consider the
expression of a generic term of the FRF matrix as a function of the modal parameters and

The previous one shows that the non-ideal impulse over time has a spectrum which is a function like sinx/x
which is basically constant in the origin and which tends to diminish until it vanishes at ω = 2π/b which therefore
defines the bandwidth.
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under the hypothesis of viscous damping

Hij(ω) =
Nmodi∑
r=1

φ∗
(r)

i φ∗
(r)

i

−ω2 + ω2
r + j2ωωrζr

(1.39)

it can be considered, in a neighborhood of ω close to the p−ma resonance, that only the fraction
p−ma of Eq. 1.39 partecipates (hypothesis SDOF) or we must consider the influence of all the
other contributions.
The hypothesis of being able to work on a model with only one degree of freedom requires
that the modes are well separated in frequency and not strongly damped, because in this case a
coupling is created even between modes that are relatively far apart in frequency. However, even
the presence of very low modal damping coefficients leads to problems for the determination of
the modal parameters, because in this case there are few significant points in the neighborhood
of the resonance frequency, while for a good reconstruction of the modal parameters it would be
useful to have a large number of relevant measurements points (at least a dozen) around each
resonance frequency.
The approach based on the single degree of freedom model is however useful at least to obtain
a first estimate of the modal parameters that can then be evaluated with greater precision by
more sophisticated methods. In this case the fundamental steps are:

� The natural vibration frequency is identified. The point correspondi to the local maximum
of the modulus of the FRF as a function of the frequency is considered as the natural
frequency of the mode, fn; it is observed that this value is found in every element of the
FRF . It can also be identified looking for the crossing points of the frequency axis of the
real part of the FRF or through the points where the imaginary part has relative minima
or maxima.

� As far as the estimation of modal damping is concerned, let us take into account the
following considerations: if, as assumed by hypothesis, we consider the single degree of
modal freedom, the average power Pm dissipated by the viscous force in a simple harmonic
motion cycle induced by a forcing f(t) = F0 sin(ωt) would be: 4

Pm(ω) :=
1

T

∫ T

0
cẋ2dt =

1

2
ccω

2F
2
0

k2
ζn[

1−
(
ω
ωn

)2]2
+ 4ζ2n

(
ω
ωn

)2 (1.42)

in which each dynamic quantity has modal meaning and c := ζncc. This average power
is maximum when ω = ωn, as it can be easily verified looking for the ω that satisfies

4In that case, by the very meaning of FRF it would be

x(t) = F0 |H(ω)| sin(ωt+ ψ) ẋ(t) = F0ω |H(ω)| cos(ωt+ ψ) (1.40)

with H(ω) = 1/k
[
1− (ω/ωn)2 + j2 (ω/ωn) ζn

]
and so,

|H(ω)|2 =
1

k2

{[
1−

(
ω
ωn

)2]2
+ 4ζ2n

(
ω
ωn

)2} (1.41)
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dPm(ω)/dω = 0.

Pmmax :=
1

8
ccω

2
n

F 2
0

ζnk2
(1.43)

If we look for the values of ω for which Pm is the “ half ” of its maximum value (from
which the term of half-power points), we would impose that Pm(ω), given by Eq. 1.42, is
equal to Pmmax/2 (see Eq. 1.43). Thus proceeding, we get:[

1−
(
ω

ωn

)2
]2
− 4ζ2n

(
ω

ωn

)2

= 0 →
(
ω

ωn

)2

± 2ζn

(
ω

ωn

)
− 1 = 0 (1.44)

whose four roots, depending on the two different choices for the sign, are:(
ω

ωn

)
1,2

= −ζn ±
√
ζ2n + 1

(
ω

ωn

)
3,4

= +ζn ±
√
ζ2n + 1 (1.45)

Owing to the nature of its coefficients (a variation and a permanence of sign), however,
each second-degree equation must have a positive and a negative root. Then, the smallest
(real) root is eliminated for each set of solutions:(

ω

ωn

)
2,4

= ∓ζn +
√
ζ2n + 1 (1.46)

If we rename then these two roots with ω1 and ω2, we get ζn easily by difference5

ζn =
ω2 − ω1

2ωn
(1.48)

which represents an estimate of the viscous damping based on the frequencies ω1 and ω2:
it remains now to say how to evaluate ω1 and ω2 based on the knowledge of H(ω). In the
following two possible ways are presented: one based on the knowledge of the modulus of
H(ω) and the other on the knowledge of its real part.

– Indicating with |H|2mp the value assumed by the modulus of the FRF at the two
roots, we have, considering Eq. 1.41 and the first of Eq. 1.44:

|H|2mp =
1

k2

{[
1−

(
ω
ωn

)2]2
+ 4ζ2n

(
ω
ωn

)2}
∣∣∣∣∣∣∣∣∣∣
ω=ω1,ω2

=
1

k28ζ2n

(
ω
ωn

)2
∣∣∣∣∣∣∣
ω=ω1,ω2

(1.49)

Finally, observing from Eq. 1.41 that |H|2max = |H(ω)|2ω=ωn
= 1/4k2ζ2n and consider-

ing Eq. 1.46, we get:

|H|2mp =
1

k28ζ2n

(
1 + 2ζ2n ∓ 2ζn

√
ζ2n + 1

) ' H2
max

2
(1.50)

5Observe that we also have

ω2
n = ω1ω2 (1.47)
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in which damping terms of order higher than the second have been neglected in the
denominator. Therefore, starting from the maximum value of the modulus of FRF
as a function of frequency, Hmax, we evaluate the half-power points, of frequency
f1 and f2, corresponding to the values Hmax/

√
2 to the left and right of the peak

value; Once the half-power points are known, the modal damping coefficient can be
evaluated using Eq. 1.48 with the relations:6

ζn =
ηn
2
' Df

2fn
(1.52)

where Df is half power bandwidth:

Df = f2 − f1 (1.53)

and where ηn is the loss factor related to the damping coefficient according to ηn =
2ζn.

– The half-power points can also be determined by estimating the relative maximum
and minimum points of the real part of H(ω) (see Fig. ??). Indeed the real part (see
Eq. ??) is given by:

Re[H(ω)] =
(ω2
n − ω2)

m[(ω2
n − ω2)2 + 4ζ2nω

2
nω

2]
(1.54)

Therefore imposing:

0 =
dRe[H(ω)]

dω
(1.55)

the following equation is obtained:

0 =
(
ω2
n − ω2

)2
− 4ζ2nω

2
n (1.56)

which is identical to Eq. 1.44 (which shows that the roots found are actually half
power points) and that has solutions ω1 and ω2:

ω2
1 = ω2

n (1− 2ζn) per ω2 < ω2
n (1.57)

ω2
2 = ω2

n (1 + 2ζn) per ω2 > ω2
n (1.58)

Subtracting one from the other gives (see also Eq. 1.51 note):

ζn =
(ω2 + ω1)(ω2 − ω1)

4ω2
n)

(1.59)

which, considering the approximation ωn = (ω1 + ω2)/2, still provides the estimate
given by Eq. 1.48.

6f the approximations made in neglecting higher order contributions were not taken into account, we would
have obtained:

ζn =
[(f2 + f1)(f2 − f1)]

4f2
n

(1.51)
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Finally, it should be added that if instead of H(ω) (receptance) we had the response
function in terms of acceleration Ha(ω) (inertance), as it is in usual in the measurements
based on the use of accelerometers, we would have, for example in the case of the approach
which uses the real part:

Re[Ha(ω)] =
−ω2(ω2

n − ω2)

m[(ω2
n − ω2)2 + 4ζ2nω

2
nω

2]
(1.60)

whose stationary points would be:

ω2
1 =

ω2
n

1 + 2ζn
= ω2

n[1− 2ζn +O(ζ2n)] (1.61)

ω2
2 =

ω2
n

1− 2ζn
= ω2

n[1 + 2ζn +O(ζ2n)] (1.62)

which shows that, apart from the usual approximations on the damping order, on the basis
of the stationarity points of the real part of the receptance we obtain the same roots given
by Eqq. 1.57 and 1.58.

� With regard to the estimation of r − th the modal shape at the Nmodes experimental
measurement points, under the SDOF assumptions, let us consider that a line of FRF is
known from the measurements, e.g. the first

H11(ω) H12(ω) H13(ω) ... H1Nmodi
(ω) (1.63)

From Eq. 1.39, assuming ωnr and ζr to be known for the r−th mode, we have for ω = ωnr :

H11(ωnr) ' φ∗
(r)

1 φ∗
(r)

1

j2ω2
nr
ζr

→ φ∗
(r)

1 = −
2ζrω

2
nr

φ∗
(r)

1

HI11(ωnr) (1.64)

in which we took into account the fact that at the resonance the real part of the FRF is
zero. Applying analogous reasoning to the elements of the same row of the FRF matrix,
it can be written:

H12(ωnr) ' φ∗
(r)

1 φ∗
(r)

2

j2ω2
nr
ζr

→ φ∗
(r)

2 = −
2ζrω

2
nr

φ∗
(r)

1

HI12(ωnr)

.............. (1.65)

H1Nmodi
(ωnr) '

φ∗
(r)

1 φ∗
(r)

Nmodi

j2ω2
nr
ζr

→ φ∗
(r)

Nmodi
= −

2ζrω
2
nr

φ∗
(r)

1

HI1Nmodi
(ωnr) (1.66)

Therefore by placing cr := −2ζrω
2
nr
/φ∗

(r)

1 , we obtain for the components of the r − th
mode: 

φ∗
(r)

1

φ∗
(r)

2

...
φ∗

(r)

Nmodi

 = cr


HI11(ωnr)
HI12(ωnr)

...
HI1Nmodi

(ωnr)

 (1.67)

which shows that, apart from an essential cr factor to its definition, the imaginary of a
row of the FRF array evaluated at the resonance frequency provide an estimate of the
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modal shape of the mode corresponding to the resonance itself.
It is also added that the same conclusions can be deduced if FRFs with accelerations at
the output are considered,7 i.e., if, instead of Eq. 1.39, the following equation is considered:

Hij(ω) =
Nmodi∑
r=1

−ω2 φ∗
(r)

i φ∗
(r)

i

−ω2 + ω2
r + j2ωωrζr

(1.68)

In fact, retracing what was shown above, one would lead to a similar result given by Eq.
1.67 with the only difference that cr := 2ζr/φ

∗(r)
1 would be defined as constant.

Observations
Of course this approach has many limitations: it is evident from 1.51 that the estimation of

the residual and of the modal damping factor depends on the evaluation of the peak value of
the modulus of the FRF measured: in particular there are difficulties in the case of low damped
modes beacuse of the very limited number of points available within the half power bandwidth.
Even the basic assumption that the modes present in the frequency band chosen for the signal
are considered as separate is not correct, because there is always a certain influence on the
resonance behavior of the generic mode of all the fundamental modes, perceptible at least for
the closest modes.
Several techniques have been proposed for the reconstruction of modal parameters. They are
generally available on all the specialized software in the field of modal analysis, and allow, when
necessary, to use a multi-mode model for the reconstruction of modal parameters.
It is observed that better evaluations of the modal parameters can be obtained by examining
separately the real and imaginary part of the FRF in the neighborhood of the resonance. On one
hand, the frequencies corresponding to the maximum points of the real part allow to evaluate the
half power bandwidth and the resonance frequency more easily even if the problems related to
the frequency resolution and the limited number of points available in the half power bandwidth
remain. On the other hand, from the peak value of the imaginary part as a function of frequency
a better estimate of the amplitude of the modal shape can be obtained.
As always, the evaluation of the resonance frequencies of the various modes present in the
measured frequency band is simpler and more precise, while major problems are related to the
determination of the modal shapes, which require a large number of measurement points and
present greater uncertainties, and of the modal damping coefficients that, in general, tend to be
overestimated. An inaccuracy of a fefw per thousand can be assessed for the measurement of
resonance frequencies while much larger inaccuracies occurs for the evaluation of the damping
coefficients.

1.5 Analyzer functions and signal analysis problems

The basic tool in the modal analysis field is the two-channel spectrum analyzer in the simplest
configuration, which refers to a SISO (Single Input Single Output) system but which can be
multi-channel for both input and output signals when referring to a MIMO (Multi Input Multi
Output) system. This instrument is able to calculate different characteristics of the input and

7It should be noted that this eventuality is that which normally occurs in the practice of dynamic measurements
due to the widespread use of accelerometric sensors.
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output signals starting from the calculation of the discrete Fourier transform, FFT, from which
it is possible to calculate the Fourier transforms and the spectral density functions which, as
mentioned, are generally used for the evaluation of FRFs.
The input signal is discretized with an analogue digital converter, A/D, and then recorded as
a succession of N values spaced by a sampling time, Ts, for a total observation time, indicated
with T where T = NTs.
If we accept the hypothesis, inherent in the use of the discrete Fourier transform, that the signal
observed in time T is periodic with period T , we can calculate its discrete Fourier transform
and thus obtain an estimate of the Fourier transform itself.
There are relations linking the signal observation time, T , the sampling pulsation, ωs, the
number of data points in time considered in the measure, N , the pulsation range considered for
the signal spectrum, determined by ωmax, the pulsation resolution used in the signal analysis,
∆ω; in particular we have:

ωmax = ωs/2 = 2πfs/2 = 2πN/2T = πN/T (1.69)

∆f =
∆ω

2π
=
π2.56

2πT
=

1.28

T
(1.70)

in which the sampling theorem ωs = 2ωmax was used to avoid the aliasing phenomenon (see
Par. 1.5.1). The frequency resolution (or step) is ∆ω = ωmax/N

∗
R, where N∗R is the number

of spectral lines, i.e. the frequency samples of the transformed provided by the FFT algorithm
which are normally N∗R = N/2.56.
The number of data in the time to be acquired in the measure, indicated with N , is fixed,
generally with the possibility of different choices depending on the characteristics of the analyzer:
this number almost always refers to powers of two and typical values are 1024, 2048, 4096, 8192,
16384, 32768 and therefore the frequency field, ωmax, and the resolution in pulsation, ∆ω, and in
frequency, ∆f , are related to the duration of the measure. The possibilities offered by industrial
processors, e.g. 80486, now make it possible to work with very high N and thus obtain very
small frequency resolutions.
It is observed from 1.70 that in order to obtain very small values for the frequency resolution
it is necessary to work with very long observation times; if you have a very high number of
measurement points, N , you have the advantage of acquiring measurements over a very wide
frequency range, but the observation time required to obtain the fixed frequency resolution is
only conditioned by 1.70 and therefore by the observation time T .
The necessity to use a long observation time, to obtain a good frequency resolution, can become
a critical point in the experimentation, especially in the case of large space structures which
are characterized by very low natural frequencies. In this case, in fact, the frequency resolution
required for the measurement becomes very small and therefore the observation time becomes
practically impossible; the problem is made even more difficult if the values of the modal damping
coefficients are very low, due to the problem of truncation of the signal which is still relevant
within the observation time.
Several aspects of digital analysis give rise to problems that are related to the approximations
inherent in the discretization process and to the practical need to observe the signal for a finite
and very limited acquisition time.
The relative problems are linked to the general problems of signal processing that go far beyond
the specific field of modal analysis; these problems are of great practical importance and their
knowledge may be necessary to acquire and use experimental data that are reliable. Some of
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Figure 1.2: Module of the theoretical spectrum of a signal and its sampling frequency fixed ωs.

these issues are outlined below in a very simplified form.

1.5.1 Aliasing

It is a phenomenon that is linked to the process of discretization of the continuous signal x(t):
if the frequency used for sampling the signal ωs is:

ωs = 2ωmax (1.71)

if it is too low compared to the actual frequency composition of the signal8 there is a distortion
effect which is due to the significant presence of signal frequencies that are outside the bandwidht
resultanting from the choice of the sampling frequency; this leads to the introduction of “ false
” low-frequency components that actually derive from out-of-band high-frequency components
that are “ reflected ” inside the bandwidth, as shown in Figs. 1.2 and 1.3. In fact the sampling
frequency, chosen according to the desired bandwidth, is not able to correctly reconstruct signals
with ω > ωmax which are mistakenly interpreted as signals with frequency ω∗ < ωmax. The
distortion in the signal spectrum can be explained by the fact that the components of the signal
that have been “cut”, i.e. which are at frequencies higher than half the sampling frequency, are
reflected, hence the name “aliasing ”, in the bandwidth chosen for the signal, between 0 and
ωs/2.
In Fig. 1.2 the “ real ” spectrum of the signal is shown and in Fig. 1.3 the distorted spectrum,
obtained from the sum of “ true ” and ‘ ‘reflected ” components is shown.
The solution to this problem is the use of “ low pass ” filters that “ cut ” and thus eliminate
the frequencies present in the signal above the frequency range given by the choice of the

8Of course, in the case of continuous structures with an unlimited number of fundamental frequencies, modes
with ω > ωmax are always present.
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Figure 1.3: module of the theoretical spectrum of a signal and that of the actual spectrum
evaluated by sampling the signal with frequency ωs.

bandwidth. Generally the use of “anti aliasing” filters is automatically arranged with the choice
of the analyser bandwidth, since the presence of these filters is absolutely necessary to obtain
experimental data which are really usable in modal analysis: this problem is therefore generally
“transparent” for the operator who does not have to perform any operation to eliminate this
effect.

1.5.2 Leakage and windowing

This phenomenon is related to the limited duration of the observation time of the signal and to
the fact that the signal, for the numerical evaluation of the FRF with the calculation of the FFT
is considered as periodic with a period equal to the observation time T . If a simple harmonic
signal is considered and if the duration of the observation time is such that it corresponds exactly
with the period of the signal or with an integer multiple of periods, the effective spectrum is
obtained, which in the example shown in Fig. 1.4 consists of a single line at the frequency, f1, of
the simple harmonic signal. If, on the contrary, the observation time does not exactly correspond
to the period of the signal, as is generally the case, there is a discontinuity in the signal which
is made periodic, but has no null value at the end of the period and there is a distortion in
the spectrum. It has several lines, instead of just the frequency line at f1 representing the
“true” spectrum, and a “diffusion” of energy to other lines in the spectrum that is caused by the
“discontinuity” in time due to the numerical process of periodicization. This procedure modifies
the signal of interest by using another time signal before performing the Fourier transform
so as to reduce the problem of “leakage”: it essentially consists of zeroing the signal at the
beginning and at the end of the observation time so as to eliminate the discontinuity created by
periodisation.
If we denote by w(t) the function of time that constitutes the window, then the signal that is
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Figure 1.4: Signals with relative discrete spectra: dispersion effect (from Rif. [?]).

analyzed is given by the product of the signal under study, x(t), and the time window w(t):

xw(t) = x(t) w(t) (1.72)

that is, in the frequency domain:

x̃w(ω) =

∫ ∞
−∞

w̃(σ)x̃(ω − σ)dσ (1.73)

In an analyzer there are always different functions are available for the time “ windows”, which
can be of rectangular, exponential, Hanning’s: they are chosen according to the type of the
input signal: in some measurement systems it is also possible define, at the operator’s choice,
functions of time to be used as ”windows” for particular purposes. In Fig. ?? some classic
functions are shown. The four most commonly used windows are defined from the function:

w(t) = a0 − a1 cos(ω0t) + a2 cos(2ω0t)− a3 cos(3ω0t) + a4 cos(4ω0t) per 0 ≤ t ≤ T
w(t) = 0 per t qualsiasi (1.74)

Thus obtaining (see Fig. 1.6):

� rectangular window: a0 = 1; a1 = a2 = a3 = a4 = 0;

� Hanning window: a0 = a1 = 1; a2 = a3 = a4 = 0;

� Kaiser-Bessel window: a0 = 1; a1 = 1.298; a2 = 0.244; a3 = .003;a4 = 0;

� Flat top window: a0 = 1; a1 = 1.933; a2 = 1.286; a3 = .388; a4 = 0.32;
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Figure 1.5: Effect of different windows on a harmonic signal in the time and frequency domain

where ω0 is the fundamental pulsation and the coefficients ak are chosen so that the areas
determined by the different windows are equal.
It is obvious that the rectangular window “ weighs ” all the data equally, while the other
windows, besides returning the initial and final values to zero, also give greater importance to
the points that are in the center of the observation window or to the initial values in the case of
the exponential window.
With regard to the use of different windows depending on the signal, we have:

� periodic signals: the Hanning window is particularly suitable, while the Kaiser-Bessel
window is suitable for frequency selectivity and the Flat-top one for good amplitude de-
termination.

� impulsive signals: the rectangular window is particularly suitable, together with the ex-
ponential one; in some cases the Hanning window can be used;

� random signals: the Hanning window is mainly used and in some cases the Kaiser-Bessel
window.

1.5.3 Zoom

As we have seen, there is a problem linked to the frequency resolution. In the analyser you can
work with a certain number of frequency lines, typically 400, 800, 1600, 3200, 6400, 12800 de-
pending on the number of data you can acquire in the measurement and the frequency resolution
is related to the maximum frequency value::

∆f = fmax/NR =
fs

2NR
=

1

2TsNR
=

N

2TNR
=

2.56

2T
= 1.28/T (1.75)
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Figure 1.6: Rectangular windows, Hanning, Kaisler-Bessel and flat-top.

where NR indicates the number of frequency lines and T the observation time; therefore once
NR is fixed, the frequency resolution ∆f decreases as the maximum frequency considered for
the signal icreases, i.e. ad the frequency bandwidth increases. The number of frequency lines is
related to the number of data acquired by the relationship: NR = N/2.56, as already mentioned,
a very high resolution in frequency requires a very long observation time.
With the “zoom” it is possible to translate the measurement around the frequency of interest in
order. The lines made available by the fast Fourier transform algorithm, which still provides data
from zero frequency to the frequency of interest, can be used to obtain a very high resolution.
For example, if the signal is simple harmonic:

x(t) = A sin(ωt) (1.76)

and if it is multiplied by a function:

x∗(t) = cos(ω1t) (1.77)

we get:

xZ(t) = x(t) x∗(t) = A sin(ωt) cos(ω1t) (1.78)

which becomes:

xZ(t) =
A

2
[sin[(ω − ω1)t] + sin[(ω + ω1)t]] (1.79)

If the higher frequency term is eliminated by filtering, the signal is shifted from its original pulse
ω towards a lower pulse ω1 chosen with the function x∗(t) and thus the signal to be “zoomed”,
indicated with xZ(t) is shifted to the pulse (ω − ω1).

22



There are different techniques for achieving this result, but anyways the time required for signal
observation becomes longer in proportion to the zoom factor. It is observed that very small
frequency resolution is necessary for structures with very low modal damping coefficients, in
order to obtain significant data from several measurement points, and also in the case of closely
coupled modes and of structures with fundamental modes at very low frequencies.

1.5.4 Avareging Procedure

The effect of noise on the measurement is reduced by the use of a number, which can also be
very high, of successive averages for the evaluation of a single measure; the number of averages is
related to the level of statistical reliability we wish to obtain and is limited by the time available
and therefore by the “cost” of the measurement. An indication for the evaluation of the number
of necessary averages can be found in the measure of the coherence γ2.
In the case of a random input, an overlapping technique is also used in the evaluation of the
averages: the n measures are not obtained with completely different data and therefore with a
total observation time equal to nT , if with T is the observation time of a single measure and
n the number of averages, but in a time much shorter than nT by using partial superposition
in the measurement time. This means that each datum includes a part of the signal already
used for the previous measurement, thus reducing the total measurement time: the method is
advantageous with respect to the sequential use of the available data, and allows a very high
number of averages to be used.

1.5.5 An example of a signal analyzer and generator

The DIFA DSA (Dynamic Signal Analyzer) 220 system is a microprocessor based measurement
system (see also App. ??). It can handle up to 20 input channels, each with ICP (Integrated
Circuit Piezoelectric), and two output channels for signal generation.
The D-TAC (Difa Transfer Analysis and Control software) provides all data acquisition, signal
processing and files preparation functions with WIMP-type interface (Windows Icons Menus
Pointer).
The software allows the evaluation and presentation of measurement functions in the time and
frequency domain with different possibilities.
The DSA 220 system has 20 input channels, 2 output channels, 1 synchronisation input and an
input/output channel: the central processor is an 80486 with 8 MB of RAM and runs under the
operating system WINDOWS 3.1.
The DSA system includes three section:

� data acquisition: up to 20 input channels, each with signal conditioning, anti-aliasing
filtering and analog/digital conversion, A/D.

� signal processing : signal filtering and FFT calculation (Fast Fourier Transforms)

� signal generation: two output signals from the DSP (Digital Signal Processor), analog and
digital filtering techniques, digital/analog conversion, D/A.

Each input channel has an amplifier with adjustable and programmable gain to bring the input
voltage up to 32 Vpp. ICP type transducers can be connected directly to the input channels.
An ETD (Equal Time Delay) filter provides anti-aliasing filtering before sending the signal to
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Figure 1.7: Block diagram of the DIFA DSA system.

the ADC digital analog converter (Analog Digital Converter), then the signal is sent to the DSP.
An input for synchronism, SYNC,allows an external trigger to be used to initiate data acquisi-
tion. The system block diagram is shown in Fig. 1.7. The input channels can bring the output
voltage between 100 mV (200mVpp) and 16 V (32Vpp) by means of a gain-adjustable amplifier:
the sensitivity can be increased in the measurement of small-level signals and optimal use the
analog-to-digital converter, ADC, can be done.
An essential point for the correct functioning of the system resides in the anti-aliasing filtering
capacity before the analog-digital converter.The anti-aliasing filtering of the DSA follows the
basic rules:

� no attenuation and linear phase response in the bandwidth, defined at 80% of the Nyquist
frequency (which is equal to half the sampling frequency);

� attenuation at −90 dB out of the bandwidth, for complete aliasing elimination.

The anti-aliasing filtering system is automatically adjusted with the choice of the measurement
band and therefore with the choice of sampling.
The DSP (Digital Signal Processor) section has two dedicated microprocessors: a Motorola
56001 for data acquisition and an Analog Devices 2105 for signal generation. To start the
measurement, the DSA can use different trigger modes; as soon as a measurement is started by
the operator, the data are collected by the DSP and a routine checks from these data if the
triggering condition chosen by the operator is respected: in this case the data acquisition and
processing process begins.
Recordings can be chosen in pre- and post-trigger mode, with pre-triggers from 0 to 100% and
post-trigger from 0 to 399% of the acquisition block; in Fig. 1.8 examples of pre- and post-trigger
conditions are shown.
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Figure 1.8: Pre and post-trigger conditions.
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