Spaceflight Mechanics

Exercise set 2

- 1. A spacecraft is placed on an Earth orbit with semimajor axis equal to $4R_E$ and perigee radius equal to $1.5R_E$ (where R_E denotes the Earth radius).
 - a. Obtain the true anomaly 4 hours after the perigee pass.
 - b. Calculate the corresponding radius *r* and the two velocity components (radial and horizontal).

Constants. $R_E = 6378.136 \text{ km}$; $\mu_E = 398600.4 \text{ km}^3/\text{sec}^2$ (Earth gravitational parameter)

2. An Earth orbit has perigee and apogee radii , $r_p \in r_A$, and initial mean anomaly M_0 equal to

 $r_P = R_E + 400$ km, $r_A = R_E + 20000$ km, $M_0 = 30$ deg

- a. Obtain the semimajor axis *a*, the eccentricity *e*, the semilatus rectum (parameter) *p*, the magnitude of the (specific) angular momentum *h*, and the (specific) energy Σ ;
- b. Plot the time histories of the radius r(t), velocity magnitude v(t), and the two components $v_r(t) \in v_{\theta}(t)$ in an orbital period;
- c. Interpret the time histories of r(t) = v(t) according to the 2nd Kepler's law
- d. Calculate the maximum value of the flight path angle and the true anomaly at which it occurs.
- 3. A ballistic missile is launched from the Earth surface with an initial velocity of 7.2 km/sec. It impacts the surface 10000 km far away from the launch site. The Earth atmosphere and other perturbations are neglected.
 - a. Prove that two ballistic arcs exist, associated with two different orbit eccentricities.
 - b. Calculate semimajor axis and eccentricity in these two cases.
 - c. Calculate the maximum altitude for both cases.

- d. Calculate the time of flight in both cases.
- e. Obtain the flight path angle at launch in both cases.
- 4. For an elliptic orbit (with arbitrary values of the semimajor axis and eccentricity)
 - a. obtain the time needed to travel from the periapse to the point where the orbit crosses the semiminor axis;
 - b. check if the result is correct in the special case corresponding to $e \rightarrow 0$
- 5. At a given time t_0 the dynamic state of an orbiting satellite corresponds to the following values of radius r, absolute longitude λ_a , latitude ϕ , flight path angle γ , velocity v, and heading angle ζ :

$$r(t_0) = R_E + 5000 \text{ km}$$
 $\lambda_a(t_0) = -110 \text{ deg}$ $\phi(t_0) = -20 \text{ deg}$
 $\gamma(t_0) = 30 \text{ deg}$ $v(t_0) = 7.2 \text{ km/sec}$ $\zeta(t_0) = 150 \text{ deg}$

- a. Obtain the five constant orbit elements a, e, i, Ω , and ω .
- b. Calculate the true anomaly at t_0 , $\theta_*(t_0)$, and the corresponding eccentric anomaly E_0 and mean anomaly M_0 .
- c. Calculate the three Cartesian components of the position vector and the velocity vector.
- 6. At a given time t_0 the dynamic state of an orbiting satellite is associated with the following Cartesian components of the position and velocity vectors:

$$X(t_0) = 7000 \text{ km} \qquad Y(t_0) = 7000 \text{ km} \qquad Z(t_0) = 800 \text{ km}$$

$$V_x(t_0) = -4.1 \text{ km/sec} \qquad V_y(t_0) = 4.6 \text{ km/sec} \qquad V_z(t_0) = 0.6 \text{ km/sec}$$

- a. Obtain the five constant orbit elements a, e, i, Ω , and ω .
- b. Calculate the true anomaly at t_0 , $\theta_*(t_0)$, and the corresponding eccentric anomaly E_0 and mean anomaly M_0 .
- c. Calculate the values of radius *r*, absolute longitude λ_a , latitude ϕ , flight path angle γ , velocity *v*, and heading angle ζ at t_0 .