
Spaceflight Mechanics 

Exercise set 7 

 

1. A cylindrical, homogeneous satellite has mass of 200 kg, radius 1 m, and height 0.5 m. Its 

orientation is associated with the following Euler parameters (quaternions): 

0 1 2 3

3
0.5     0.75          0

4
q q q q     

(a) Obtain the Bryant’s angles (sequence 3-2-1) associated with this orientation. 

The satellite has pure spin about the axis of maximal inertia, with angular rate 1

0 3 sec  . 

Then, two appendices are deployed. They are modeled as point masses, and each of them 

has mass of 5 kg (see figure, taken from the top). The rods that connect these two masses 

with the cylinder are rigid and massless. After deployment, the angular rate decreases to 

11 secf  . 

(b) Calculate the length of each rod (denoted with l in the figure). 

 

        Before deployment (top view)                    After deployment (top view) 

 

 

2. An axisymmetric satellite, with symmetry axis 3ê , is not subject to external torques and no 

energy dissipation occurs. At a given time 
0t , the satellite rotates with angular velocity 

components given by 

1 1 1

10 20 300.02 sec           0.05 sec           0.5 sec         

whereas the principal inertia moments are  

2 2

1 2 3200 kg m           250 kg mTI I I I       



The inertial axis 3Ê  is aligned with the angular momentum CH , and the Euler angles 

(sequence 3-1-3) are employed to describe the instantaneous spacecraft orientation. The 

precession angle   at 
0t  equals 60 deg.  

(a) Calculate the angular momentum components along the principal axes of inertia at 
0t . 

(b) Evaluate the nutation angle   and the spin angle   at 
0t . 

(c) At 
0t , obtain the rotation matrix 

B I
R , where B  1 2 3

ˆ ˆ ˆ, ,e e e  is the reference frame 

associated with the principal axes of inertia and I  1 2 3
ˆ ˆ ˆ, ,E E E  is the inertial frame. 

At 0 60 sect  , an impulsive torque (with duration of 1 sec) is applied, such that the 

subsequent attitude motion is pure spin about body axis 3ê . 

(d) Determine direction (in the body axes frame  1 2 3
ˆ ˆ ˆ, ,e e e ) and magnitude of this impulsive 

torque. 

 

3. A cylindrical axisymmetric spacecraft has radius of 1 m, moments of inertia 

2 2

1 2 320 kg m           35 kg mTI I I I       

and is subject to no external torque. Axis 3Ê  of the inertial reference frame is aligned with 

the angular momentum  0C tH ; the spacecraft rotates with a constant nutation angle   of 

60 deg and a transverse velocity component 
2 2 1

12 1 2 0.3 sec      . At 0t
  

 1 0 12t     . 

(a) Determine the angular velocity component 
3 . 

(b) The spacecraft is equipped with two thrusters (see figure below), which are ignited for 1 

sec at 0t  and provide a propulsive thrust F, whose magnitude F equals 1 newton. Under 

the impulsive torque assumption, obtain the components (along the body axes) of the 

angular momentum  0C tH  after ignition of the two thrusters. 

(c) A new inertial reference frame is defined, with axis 3Ê  aligned with  0C tH . Calculate 

the nutation angle at 0t
 , with respect to 3Ê . 

(d) In the new inertial reference frame, the precession angle at 0t
  is  0 0t   . Determine 

the principal axis and angle associated with the instantaneous orientation of the 

spacecraft at time 
0 60 sect t  . 



 

 

4. An axisymmetric satellite, with symmetry axis 3ê  aligned with the satellite longitudinal 

axis, is not subject to external torques and no energy dissipation occurs. At a given time 
0t , 

the satellite rotates with angular velocity components given by 

1 1 1

10 20 300.05 sec           0.02 sec           0.5 sec         

whereas the principal inertia moments are  

2 2

1 2 3100 kg m           150 kg mTI I I I       

The inertial axis 3Ê  is aligned with the angular momentum CH , and the Euler angles 

(sequence 3-1-3) are employed to describe the instantaneous spacecraft orientation. The 

precession angle   at 
0t  equals 30 deg.  

(a) Calculate the angular momentum components along the principal axes of inertia at 
0t  

(b) Evaluate the nutation angle   and the spin angle   at 
0t  

(c) At 
0t , obtain the rotation matrix 

B I
R , where B  1 2 3

ˆ ˆ ˆ, ,e e e  is the reference frame 

associated with the principal axes of inertia and I  1 2 3
ˆ ˆ ˆ, ,E E E  is the inertial frame. 

 

 

 

 

 

 

 

 

 



SOLUTION OF EXERCISE 1 

 

Point (a). The rotation matrix associated with the instantaneous orientation is found on the 

basis of the known values of quaternions, 

   

   

   

2 2 2 2

0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2

1 2 0 3 0 2 1 3 2 3 0 1

2 2 2 2

1 3 0 2 2 3 0 1 0 3 2 1

2 2 0.6250 0.6495 0.4330

2 2 0.6495 0.1250 0.7500

2 2 0.4330 0.7500 0.5000
B I

q q q q q q q q q q q q

q q q q q q q q q q q q

q q q q q q q q q q q q


       
   

          
           

R  

Then, Bryant’s angles are found from the general relations that yield them from 
B I
R  

13arcsin 25.66 degr     

12 11 0.7206
sin 0.7206   and   cos 0.6934  2arctan 46.10 deg

cos cos 1 0.6934

r r
  

 
      


 

23 33 0.8321
sin 0.8321   and   cos 0.5527  2arctan 123.69 deg

cos cos 1 0.5527

r r
  

 
       


 

where  ijr  are the elements of matrix 
B I
R . 

Point (b). As a first step, using the relations that hold for a homogeneous cylinder, the 

principal moments of inertia are 

 
2

2 2 2 2

3 1 2100 kg m      3 54.167 kg m
2 12

MR M
I I I R H       

Hence, the axis of maximal inertia is 3ê  and pure spin occurs about this axis. Due to 

conservation of the angular momentum, 

 
2

3 0 3 2 fI I m l R     
 

        where 

 
2

2 2

3 3 3100 kg m      95 kg m   190 kg      5 kg
2

f

f

M R
I I I M m        

Hence, one obtains 

 
2 3 0 3

        3.528 m
2

f

f

I I
l R l

m

 



 
     

 

SOLUTION OF EXERCISE 2 

 

Point (a). The three components  1 2 3
ˆ ˆ ˆ, ,e e e  of the angular momentum CH  are 

2 2 2

1 1 10 2 2 20 3 3 30

m m m
4 kg         10 kg         125 kg 

sec sec sec
H I H I H I          

Point (b). Because 3Ê  is aligned with the angular momentum CH , the spin angle 0  and the 

nutation angle 0  are given by 



 3
0 0arccos                   4.9 degC C

C

H
H

H
 

 
    

 
H  

1 2
0 0 0

0 0

sin      and     cos           158.2 deg
sin sinC C

H H

H H
  

 
     

Point (c). The rotation matrix 
B I
R  is found as the result of three consecutive elementary rotations,  

     3 0 1 0 3 0

0.7847 0.6191 0.0319

0.6154 0.7842 0.0797

0.0743 0.0429 0.9963
B I

  


  
 

   
 
  

R R R R  

Point (d). An axisymmetric satellite rotates with angular velocity components (along  1 2 3
ˆ ˆ ˆ, ,e e e ) 

given by 

   1 12 2 12 3 30cos         sin         P Pt t               

where 

2 2 3 20 10
12 10 20 30

12 12

        1        sin =        cos =P

T

I

I

 
      

 

 
    

 
 

After 60 sec, one obtains the following values for the angular velocity components (at 

1 0 60 sect t  ): 

     1 1 1

1 1 2 1 3 10.0538 sec         0.0014 sec         0.5 sect t t        

and the corresponding components of the angular momentum are given by 

           1 1 1 1 1 2 1 2 2 1 3 1 3 3 1                H t I t H t I t H t I t      

Right after the impulsive torque (at 1t
 ), the satellite rotates with pure spin about axis 3, therefore the 

components of CH  are  

       1 1 2 1 3 1 3 3 10        0        H t H t H t I t      

This means that 

     1 1         1 secC C Ct t t t     H H L  

and finally one obtains the three torque components 

   

   

   

1 1 1 1

1

2 1 2 1

2

3 1 3 1

3

10.7665 N m      

0.2856 N m      

0 N m

C

C

C

H t H t
L

t

H t H t
L

t

H t H t
L

t








  




  




 



 

and the torque magnitude 

10.7703 N mCL   

 

 



SOLUTION OF EXERCISE 3 

 

Point (a). For free-torque motion of an axisymmetric spacecraft, if 3Ê  is aligned with the 

angular momentum, then the angular velocity component 
3  and the transverse angular 

velocity 12  fulfill the following relation: 

112 12
3

3 3 3

tan           0.099 sec
tan

T TI I

I I

 
 

 

     

Point (b). The two thrusters portrayed in the figure provide a torque CL  aligned with body 

axis 1̂e , i.e. 
1 1̂C CL eL . The torque component 

1CL  is given by 

1 2 2 N mCL FR   

This torque is applied for 1 sec, hence its action can be approximated as instantaneous 

(impulsive torque assumption). The angular momentum variation at 
0t  is given by 

     0 0      1 secC C Ct t t t     H H L  

As a result, right after the impulse, the angular momentum is 

   

2

11 2

0 2 2

2
3 3

ˆ 4 kg m sec
m

ˆ4 0 3.464  kg      i.e.     0
sec

ˆ 3.464 kg m sec

C

C C

C

He

t e H

e H



   
 

   
    

H  

Point (c). At 0t
 , because 3Ê  is aligned with  0C tH , the following relations hold:  

 
 
 

 

 
 

   

 
 

   

 

3 3 0

0 0

0

1 0

0

0 0

0

2 0

0

0 0

cos           49.1 deg

sin
sin

          90 deg

cos
sin

C

T

C

T

C

I t
t t

H t

I t
t

H t t
t

I t
t

H t t


 














 







 







 

    
 


  
     

  


        

 

Point (d).  The time evolution of the three Euler angles for an axisymmetric spacecraft is 

     

   

       

12
0 0

0

3
0 3 0 0

sin

1
T

t t t t

t t

I
t t t t t

I


 



 

  





 

  



 
    

 

 

Right after the impulsive torque the angular velocity components are 

     1 11 2 3
1 0 1 0 3 0

3

0.2 sec      0     0.099 secC C C

T T

H H H
t t t

I I I
              

Hence, at time 
0 60 sect t  , the three Euler angles equal 



     189.5 deg     49.1 deg     14.8 degt t t      

At t  the rotation matrix 
B I
R  is the result of three subsequent elementary rotations 3-1-3 by 

angles  t ,  t , and  t . The general expression derived during the lectures can be 

used, to obtain 

0.9256 0.3253 0.1933

0.3571 0.5818 0.7308

0.1253 0.7455 0.6547
B I

  
 

 
 
  

R  

Once the rotation matrix is found, the principal axis and angle can be derived, 

 11 22 33

23 32
1

31 13
2

12 21
3

1
arccos 1 157.9 deg

2

0.0195        
2sin

0.4230        
2sin

0.9059
2sin

r r r

r r
a

r r
a

r r
a

 
      

 


  




  




  



 

where  ijr  are the elements of matrix 
B I
R . 

 

SOLUTION OF EXERCISE 4 

Point (a). The three components of the angular momentum (along the principal axes of 

inertia) are 

2 2 2

1 1 10 2 2 20 3 3 30

m m m
5 kg           2 kg           75 kg

sec sec sec
H I H I H I             

Point (b). When 3Ê  is aligned with CH , the following relations hold:  

3 30 1 10 2 20
0 0 0

0 0

cos      sin      cos
sin sinC C C

I I I

H H H

  
  

 
    

and lead to obtaining the desired values 

0 04.1 deg     and     68.2 deg     

Point (c). At 0t  the rotation matrix 
B I
R  is the result of three subsequent elementary rotations 

3-1-3 by angles 0 , 0 , and 0  (the Euler angles). The general expression derived during 

the lectures can be used, to obtain 

0.7847 0.6163 0.0665

0.6189 0.7850 0.0266

0.0358 0.0620 0.9974
B I

  
 


 
  

R  

 


