Spaceflight Mechanics

Exercise set 7

1. A cylindrical, homogeneous satellite has mass of 200 kg , radius 1 m , and height 0.5 m . Its orientation is associated with the following Euler parameters (quaternions):

$$
q_{0}=0.5 \quad q_{1}=0.75 \quad q_{2}=\frac{\sqrt{3}}{4} \quad q_{3}=0
$$

(a) Obtain the Bryant's angles (sequence 3-2-1) associated with this orientation.

The satellite has pure spin about the axis of maximal inertia, with angular rate $\omega_{0}=3 \mathrm{sec}^{-1}$. Then, two appendices are deployed. They are modeled as point masses, and each of them has mass of 5 kg (see figure, taken from the top). The rods that connect these two masses with the cylinder are rigid and massless. After deployment, the angular rate decreases to $\omega_{f}=1 \mathrm{sec}^{-1}$.
(b) Calculate the length of each rod (denoted with l in the figure).

2. An axisymmetric satellite, with symmetry axis \hat{e}_{3}, is not subject to external torques and no energy dissipation occurs. At a given time t_{0}, the satellite rotates with angular velocity components given by

$$
\omega_{10}=0.02 \sec ^{-1} \quad \omega_{20}=-0.05 \mathrm{sec}^{-1} \quad \omega_{30}=0.5 \mathrm{sec}^{-1}
$$

whereas the principal inertia moments are

$$
I_{1}=I_{2}=I_{T}=200 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad I_{3}=250 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

The inertial axis \hat{E}_{3} is aligned with the angular momentum \boldsymbol{H}_{C}, and the Euler angles (sequence 3-1-3) are employed to describe the instantaneous spacecraft orientation. The precession angle ψ at t_{0} equals 60 deg .
(a) Calculate the angular momentum components along the principal axes of inertia at t_{0}.
(b) Evaluate the nutation angle θ and the spin angle ϕ at t_{0}.
(c) At t_{0}, obtain the rotation matrix $\underset{B \leftarrow I}{\mathbf{R}}$, where $\mathrm{B}\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right)$ is the reference frame associated with the principal axes of inertia and $\mathrm{I}\left(\hat{E}_{1}, \hat{E}_{2}, \hat{E}_{3}\right)$ is the inertial frame.

At $t_{0}+60 \mathrm{sec}$, an impulsive torque (with duration of 1 sec) is applied, such that the subsequent attitude motion is pure spin about body axis \hat{e}_{3}.
(d) Determine direction (in the body axes frame $\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right)$) and magnitude of this impulsive torque.
3. A cylindrical axisymmetric spacecraft has radius of 1 m , moments of inertia

$$
I_{1}=I_{2}=I_{T}=20 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad I_{3}=35 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

and is subject to no external torque. Axis \hat{E}_{3} of the inertial reference frame is aligned with the angular momentum $\boldsymbol{H}_{C}\left(t_{0}^{-}\right)$; the spacecraft rotates with a constant nutation angle θ of 60 deg and a transverse velocity component $\omega_{12}=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}}=0.3 \mathrm{sec}^{-1}$. At t_{0}^{-} $\omega_{1}\left(t_{0}^{-}\right)=-\omega_{12}$.
(a) Determine the angular velocity component ω_{3}.
(b) The spacecraft is equipped with two thrusters (see figure below), which are ignited for 1 \sec at t_{0} and provide a propulsive thrust \boldsymbol{F}, whose magnitude F equals 1 newton. Under the impulsive torque assumption, obtain the components (along the body axes) of the angular momentum $\boldsymbol{H}_{C}\left(t_{0}^{+}\right)$after ignition of the two thrusters.
(c) A new inertial reference frame is defined, with axis \hat{E}_{3}^{\prime} aligned with $\boldsymbol{H}_{C}\left(t_{0}^{+}\right)$. Calculate the nutation angle at t_{0}^{+}, with respect to \hat{E}_{3}^{\prime}.
(d) In the new inertial reference frame, the precession angle at t_{0}^{+}is $\psi\left(t_{0}^{+}\right)=0$. Determine the principal axis and angle associated with the instantaneous orientation of the spacecraft at time $t=t_{0}+60 \mathrm{sec}$.

4. An axisymmetric satellite, with symmetry axis \hat{e}_{3} aligned with the satellite longitudinal axis, is not subject to external torques and no energy dissipation occurs. At a given time t_{0}, the satellite rotates with angular velocity components given by

$$
\omega_{10}=-0.05 \sec ^{-1} \quad \omega_{20}=0.02 \mathrm{sec}^{-1} \quad \omega_{30}=0.5 \mathrm{sec}^{-1}
$$

whereas the principal inertia moments are

$$
I_{1}=I_{2}=I_{T}=100 \mathrm{~kg} \cdot \mathrm{~m}^{2} \quad I_{3}=150 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

The inertial axis \hat{E}_{3} is aligned with the angular momentum \boldsymbol{H}_{C}, and the Euler angles (sequence 3-1-3) are employed to describe the instantaneous spacecraft orientation. The precession angle ψ at t_{0} equals 30 deg .
(a) Calculate the angular momentum components along the principal axes of inertia at t_{0}
(b) Evaluate the nutation angle θ and the spin angle ϕ at t_{0}
(c) At t_{0}, obtain the rotation matrix $\underset{B \leftarrow I}{\mathbf{R}}$, where $\mathrm{B}\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right)$ is the reference frame associated with the principal axes of inertia and $\mathrm{I}\left(\hat{E}_{1}, \hat{E}_{2}, \hat{E}_{3}\right)$ is the inertial frame.

SOLUTION OF EXERCISE 1

Point (a). The rotation matrix associated with the instantaneous orientation is found on the basis of the known values of quaternions,

$$
\underset{B \leftarrow I}{\mathbf{R}}=\left[\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2\left(q_{1} q_{2}+q_{0} q_{3}\right) & 2\left(q_{1} q_{3}-q_{0} q_{2}\right) \\
2\left(q_{1} q_{2}-q_{0} q_{3}\right) & q_{0}^{2}+q_{2}^{2}-q_{1}^{2}-q_{3}^{2} & 2\left(q_{2} q_{3}+q_{0} q_{1}\right) \\
2\left(q_{1} q_{3}+q_{0} q_{2}\right) & 2\left(q_{2} q_{3}-q_{0} q_{1}\right) & q_{0}^{2}+q_{3}^{2}-q_{2}^{2}-q_{1}^{2}
\end{array}\right]=\left[\begin{array}{ccc}
0.6250 & 0.6495 & -0.4330 \\
0.6495 & -0.1250 & 0.7500 \\
0.4330 & -0.7500 & -0.5000
\end{array}\right]
$$

Then, Bryant's angles are found from the general relations that yield them from $\underset{B \leftarrow I}{\mathbf{R}}$

$$
\theta=-\arcsin r_{13}=25.66 \mathrm{deg}
$$

$\sin \psi=\frac{r_{12}}{\cos \theta}=0.7206$ and $\cos \psi=\frac{r_{11}}{\cos \theta}=0.6934 \Rightarrow \psi=2 \arctan \frac{0.7206}{1+0.6934}=46.10 \mathrm{deg}$ $\sin \phi=\frac{r_{23}}{\cos \theta}=0.8321$ and $\cos \phi=\frac{r_{33}}{\cos \theta}=-0.5527 \Rightarrow \phi=2 \arctan \frac{0.8321}{1-0.5527}=123.69 \mathrm{deg}$ where $\left\{r_{i j}\right\}$ are the elements of matrix $\underset{B \leftarrow I}{\mathbf{R}}$.
Point (b). As a first step, using the relations that hold for a homogeneous cylinder, the principal moments of inertia are

$$
I_{3}=\frac{M R^{2}}{2}=100 \mathrm{~kg} \mathrm{~m}^{2} \quad I_{1}=I_{2}=\frac{M}{12}\left(3 R^{2}+H^{2}\right)=54.167 \mathrm{~kg} \mathrm{~m}^{2}
$$

Hence, the axis of maximal inertia is \hat{e}_{3} and pure spin occurs about this axis. Due to conservation of the angular momentum,

$$
\begin{gathered}
I_{3}^{-} \omega_{0}=\left[I_{3}^{+}+2 \tilde{m}(l+R)^{2}\right] \omega_{f} \quad \text { where } \\
I_{3}^{-}=I_{3}=100 \mathrm{~kg} \mathrm{~m}^{2} \quad I_{3}^{+}=\frac{M_{f} R^{2}}{2}=95 \mathrm{~kg} \mathrm{~m}^{2} \quad\left(M_{f}=190 \mathrm{~kg}\right) \quad \tilde{m}=5 \mathrm{~kg}
\end{gathered}
$$

Hence, one obtains

$$
(l+R)^{2}=\frac{I_{3}^{-} \omega_{0}-I_{3}^{+} \omega_{f}}{2 \tilde{m} \omega_{f}} \Rightarrow l=3.528 \mathrm{~m}
$$

SOLUTION OF EXERCISE 2

Point (a). The three components $\left(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}\right)$ of the angular momentum \boldsymbol{H}_{C} are

$$
H_{1}=I_{1} \omega_{10}=4 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{sec}} \quad H_{2}=I_{2} \omega_{20}=-10 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{sec}} \quad H_{3}=I_{3} \omega_{30}=125 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{sec}}
$$

Point (b). Because \hat{E}_{3} is aligned with the angular momentum \boldsymbol{H}_{C}, the spin angle ϕ_{0} and the nutation angle θ_{0} are given by

$$
\begin{gathered}
\theta_{0}=\arccos \left[\frac{H_{3}}{H_{C}}\right] \quad\left(H_{C}=\left|\boldsymbol{H}_{C}\right|\right) \quad \Rightarrow \quad \theta_{0}=4.9 \mathrm{deg} \\
\sin \phi_{0}=\frac{H_{1}}{H_{C} \sin \theta_{0}} \quad \text { and } \quad \cos \phi_{0}=\frac{H_{2}}{H_{C} \sin \theta_{0}} \quad \Rightarrow \quad \phi_{0}=158.2 \mathrm{deg}
\end{gathered}
$$

Point (c). The rotation matrix $\underset{B \leftarrow I}{\mathbf{R}}$ is found as the result of three consecutive elementary rotations,

Point (d). An axisymmetric satellite rotates with angular velocity components (along ($\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}$)) given by

$$
\omega_{1}=\omega_{12} \cos \left(\omega_{P} t+\varphi\right) \quad \omega_{2}=\omega_{12} \sin \left(\omega_{P} t+\varphi\right) \quad \omega_{3}=\omega_{30}
$$

where

$$
\omega_{12}=\sqrt{\omega_{10}^{2}+\omega_{20}^{2}} \quad \omega_{P}=\omega_{30}\left(\frac{I_{3}}{I_{T}}-1\right) \quad \sin \varphi=\frac{\omega_{20}}{\omega_{12}} \quad \cos \varphi=\frac{\omega_{10}}{\omega_{12}}
$$

After 60 sec , one obtains the following values for the angular velocity components (at $\left.t_{1}=t_{0}+60 \mathrm{sec}\right):$

$$
\omega_{1}\left(t_{1}\right)=0.0538 \mathrm{sec}^{-1} \quad \omega_{2}\left(t_{1}\right)=0.0014 \mathrm{sec}^{-1} \quad \omega_{3}\left(t_{1}\right)=0.5 \mathrm{sec}^{-1}
$$

and the corresponding components of the angular momentum are given by

$$
H_{1}\left(t_{1}\right)=I_{1} \omega_{1}\left(t_{1}\right) \quad H_{2}\left(t_{1}\right)=I_{2} \omega_{2}\left(t_{1}\right) \quad H_{3}\left(t_{1}\right)=I_{3} \omega_{3}\left(t_{1}\right)
$$

Right after the impulsive torque (at t_{1}^{+}), the satellite rotates with pure spin about axis 3 , therefore the components of \boldsymbol{H}_{C} are

$$
H_{1}\left(t_{1}^{+}\right)=0 \quad H_{2}\left(t_{1}^{+}\right)=0 \quad H_{3}\left(t_{1}^{+}\right)=I_{3} \omega_{3}\left(t_{1}\right)
$$

This means that

$$
\boldsymbol{H}_{C}\left(t_{1}^{+}\right)-\boldsymbol{H}_{C}\left(t_{1}\right)=\boldsymbol{L}_{C} \Delta t \quad(\Delta t=1 \mathrm{sec})
$$

and finally one obtains the three torque components

$$
\begin{aligned}
& L_{C 1}=\frac{H_{1}\left(t_{1}^{+}\right)-H_{1}\left(t_{1}\right)}{\Delta t}=-10.7665 \mathrm{~N} \mathrm{~m} \\
& L_{C 2}=\frac{H_{2}\left(t_{1}^{+}\right)-H_{2}\left(t_{1}\right)}{\Delta t}=-0.2856 \mathrm{~N} \mathrm{~m} \\
& L_{C 3}=\frac{H_{3}\left(t_{1}^{+}\right)-H_{3}\left(t_{1}\right)}{\Delta t}=0 \mathrm{~N} \mathrm{~m}
\end{aligned}
$$

and the torque magnitude

$$
L_{C}=10.7703 \mathrm{~N} \mathrm{~m}
$$

SOLUTION OF EXERCISE 3

Point (a). For free-torque motion of an axisymmetric spacecraft, if \hat{E}_{3} is aligned with the angular momentum, then the angular velocity component ω_{3} and the transverse angular velocity ω_{12} fulfill the following relation:

$$
\frac{I_{T} \omega_{12}}{I_{3} \omega_{3}}=\tan \theta \quad \rightarrow \quad \omega_{3}=\frac{I_{T} \omega_{12}}{I_{3} \tan \theta}=0.099 \mathrm{sec}^{-1}
$$

Point (b). The two thrusters portrayed in the figure provide a torque \boldsymbol{L}_{C} aligned with body axis \hat{e}_{1}, i.e. $\boldsymbol{L}_{C}=L_{C 1} \hat{e}_{1}$. The torque component $L_{C 1}$ is given by

$$
L_{C 1}=2 F R=2 \mathrm{~N} \mathrm{~m}
$$

This torque is applied for 1 sec , hence its action can be approximated as instantaneous (impulsive torque assumption). The angular momentum variation at t_{0} is given by

$$
\boldsymbol{H}_{C}\left(t_{0}^{+}\right)-\boldsymbol{H}_{C}\left(t_{0}^{-}\right)=\boldsymbol{L}_{C} \Delta t \quad(\Delta t=1 \mathrm{sec})
$$

As a result, right after the impulse, the angular momentum is

$$
\boldsymbol{H}_{C}\left(t_{0}^{+}\right)=\left[\begin{array}{lll}
-4 & 0 & 3.464
\end{array}\right]\left[\begin{array}{l}
\hat{e}_{1} \\
\hat{e}_{2} \\
\hat{e}_{3}
\end{array}\right] \mathrm{kg} \frac{\mathrm{~m}^{2}}{\mathrm{sec}} \quad \text { i.e. } \quad\left\{\begin{array}{l}
H_{C 1}=-4 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec} \\
H_{C 2}=0 \\
H_{C 3}=3.464 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{sec}
\end{array}\right.
$$

Point (c). At t_{0}^{+}, because \hat{E}_{3}^{\prime} is aligned with $\boldsymbol{H}_{C}\left(t_{0}^{+}\right)$, the following relations hold:

$$
\begin{aligned}
& \cos \left[\theta\left(t_{0}^{+}\right)\right]=\frac{I_{3} \omega_{3}\left(t_{0}^{+}\right)}{H_{C}\left(t_{0}^{+}\right)} \quad \rightarrow \quad \theta\left(t_{0}^{+}\right)=49.1 \mathrm{deg} \\
& \left\{\begin{array}{l}
\sin \left[\phi\left(t_{0}^{+}\right)\right]=\frac{I_{T} \omega_{1}\left(t_{0}^{+}\right)}{H_{C}\left(t_{0}^{+}\right) \sin \left[\theta\left(t_{0}^{+}\right)\right]} \\
\cos \left[\phi\left(t_{0}^{+}\right)\right]=\frac{I_{T} \omega_{2}\left(t_{0}^{+}\right)}{H_{C}\left(t_{0}^{+}\right) \sin \left[\theta\left(t_{0}^{+}\right)\right]}
\end{array} \rightarrow \quad \phi\left(t_{0}^{+}\right)=-90 \mathrm{deg}\right.
\end{aligned}
$$

Point (d). The time evolution of the three Euler angles for an axisymmetric spacecraft is

$$
\begin{aligned}
& \psi(t)=\psi\left(t_{0}^{+}\right)+\frac{\omega_{12}}{\sin \theta}\left(t-t_{0}\right) \\
& \theta(t)=\theta\left(t_{0}^{+}\right) \\
& \phi(t)=\phi\left(t_{0}^{+}\right)+\omega_{3}\left(t_{0}^{+}\right)\left[1-\frac{I_{3}}{I_{T}}\right]\left(t-t_{0}\right)
\end{aligned}
$$

Right after the impulsive torque the angular velocity components are

$$
\omega_{1}\left(t_{0}^{+}\right)=\frac{H_{C 1}}{I_{T}}=-0.2 \sec ^{-1} \quad \omega_{1}\left(t_{0}^{+}\right)=\frac{H_{C 2}}{I_{T}}=0 \quad \omega_{3}\left(t_{0}^{+}\right)=\frac{H_{C 3}}{I_{3}}=0.099 \mathrm{sec}^{-1}
$$

Hence, at time $\bar{t}=t_{0}+60 \mathrm{sec}$, the three Euler angles equal

$$
\psi(\bar{t})=189.5 \mathrm{deg} \quad \theta(\bar{t})=49.1 \mathrm{deg} \quad \phi(\bar{t})=14.8 \mathrm{deg}
$$

At \bar{t} the rotation matrix $\underset{B \leftarrow I}{\mathbf{R}}$ is the result of three subsequent elementary rotations 3-1-3 by angles $\psi(\bar{t}), \theta(\bar{t})$, and $\phi(\bar{t})$. The general expression derived during the lectures can be used, to obtain

$$
\underset{B \leftarrow I}{\mathbf{R}}=\left[\begin{array}{ccc}
-0.9256 & -0.3253 & 0.1933 \\
0.3571 & -0.5818 & 0.7308 \\
-0.1253 & 0.7455 & 0.6547
\end{array}\right]
$$

Once the rotation matrix is found, the principal axis and angle can be derived,

$$
\begin{aligned}
& \Phi=\arccos \left\{\frac{1}{2}\left[r_{11}+r_{22}+r_{33}-1\right]\right\}=157.9 \mathrm{deg} \\
& a_{1}=\frac{r_{23}-r_{32}}{2 \sin \Phi}=-0.0195 \\
& a_{2}=\frac{r_{31}-r_{13}}{2 \sin \Phi}=-0.4230 \\
& a_{3}=\frac{r_{12}-r_{21}}{2 \sin \Phi}=-0.9059
\end{aligned}
$$

where $\left\{r_{i j}\right\}$ are the elements of matrix $\underset{B \leftarrow I}{\mathbf{R}}$.

SOLUTION OF EXERCISE 4

Point (a). The three components of the angular momentum (along the principal axes of inertia) are

$$
H_{1}=I_{1} \omega_{10}=-5 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{\sec } \quad H_{2}=I_{2} \omega_{20}=2 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{sec}} \quad H_{3}=I_{3} \omega_{30}=75 \mathrm{~kg} \cdot \frac{\mathrm{~m}^{2}}{\mathrm{sec}}
$$

Point (b). When \hat{E}_{3} is aligned with \boldsymbol{H}_{C}, the following relations hold:

$$
\cos \theta_{0}=\frac{I_{3} \omega_{30}}{H_{C}} \quad \sin \phi_{0}=\frac{I_{1} \omega_{10}}{H_{C} \sin \theta_{0}} \quad \cos \phi_{0}=\frac{I_{2} \omega_{20}}{H_{C} \sin \theta_{0}}
$$

and lead to obtaining the desired values

$$
\theta_{0}=4.1 \mathrm{deg} \quad \text { and } \quad \phi_{0}=-68.2 \mathrm{deg}
$$

Point (c). At t_{0} the rotation matrix $\underset{B \leftarrow I}{\mathbf{R}}$ is the result of three subsequent elementary rotations 3-1-3 by angles ψ_{0}, θ_{0}, and ϕ_{0} (the Euler angles). The general expression derived during the lectures can be used, to obtain

$$
\underset{B \leftarrow I}{\mathbf{R}}=\left[\begin{array}{ccc}
0.7847 & -0.6163 & -0.0665 \\
0.6189 & 0.7850 & 0.0266 \\
0.0358 & -0.0620 & 0.9974
\end{array}\right]
$$

