Spaceflight Mechanics Exercise Set M (Miscellaneous)

A.A. 2022-2023

November 28, 2022

Data

Sidereal day	$\mathcal{T}_{sid} = 86164\mathrm{s}$
Solar day	$\mathcal{T}_{sol} = 86400\mathrm{s}$
Earth grav. param.	$\mu_{\oplus} = 398600.4\mathrm{km}^3/\mathrm{s}^2$

Exercise 1

A satellite is injected into a sub-orbital trajectory with perigee radius equal to $500 \,\mathrm{km}$ and apogee radius $20\,000 \,\mathrm{km}$. Assume no drag.

- Evaluate semi-major axis and eccentricity
- Evaluate velocity and flight path angle at departure and arrival point (on the ground)
- Evaluate the range and the travel time
- Evaluate the velocity increment (ΔV) required to put the satellite circularize the orbit at the apocenter altitude.

Results

 $\begin{array}{l} a = 10\,250\,{\rm km},\,e = 0.9512,\,V = 9.279\,{\rm km},\,\gamma = 70.53\,{\rm deg},\\ s = 6026\,{\rm km},\,\Delta t = 156.27\,{\rm min},\,\Delta V = 3.478\,{\rm km/s} \end{array}$

Exercise 2

A satellite is flying on an Molniya orbit, with Period $\mathcal{T} = 0.5\mathcal{T}_{sol}$, pericenter altitude $h_p = 1023 \,\mathrm{km}$, inclination $i = 63.4 \,\mathrm{deg}$, RAAN $\Omega = 60 \,\mathrm{deg}$, argument of pericenter $\omega = -90 \,\mathrm{deg}$. Evaluate:

- a) position and velocity in cartesian components at the true anomaly 18 deg.
- b) absolute Longitude and latitude of the subsatellite point
- c) flight path angle γ and east-heading angle ζ at that anomaly

Results

 $\boldsymbol{r} = [3953.8, 413.2, -6425.2]^T \text{ km}, \, \boldsymbol{v} = [3.999, 8.477, 1.547]^T \text{ km/s}$ $\lambda_a = 5.97 \text{ deg}, \, \phi = -58.25 \text{ deg}, \, \gamma = 7.504 \text{ deg}, \, \zeta = 31.67 \text{ deg}$

Exercise 3

Solve the Hohmann transfer between two circular orbits of period 90 min and 600 min, respectively.

Results $\Delta V_1 = 1.926 \,\mathrm{km/s}, \,\Delta V_2 = 1.383 \,\mathrm{km/s}, \,\Delta V_{tot} = 3.310 \,\mathrm{km/s}$

Exercise 4

A satellite is on circular orbit or radius 6600 km At time $t_0 = 0$, the satellite is on the vertical of Cape Canaveral (28.5 deg N, 80.5 deg W) and the velocity is directed toward East.

Part A: Design a mission to inject the satellite into a Geosyncronous (GEO) orbit, considering the following mission plans:

- one change of plane, separated maneuvers (S) $LEO(i = i_{LEO}) \rightarrow GTO(i = i_{LEO}) \rightarrow GTO(i = 0) \rightarrow GEO(i = 0)$
- one change of plane, combined maneuvers (C) $LEO(i = i_{LEO}) \rightarrow GTO(i = i_{LEO}) \rightarrow GEO(i = 0)$

Part B: Next, introducing a waiting orbit (WO) with apocenter on the GEO orbit, design a mission plan which allows to phase the satellite in GEO so that it belongs to the same meridian as Cape Canaveral. $\text{LEO}(i = i_{LEO}) \rightarrow \text{GTO}(i = i_{GTO}) \rightarrow \text{WO}(i = i_{WO}) \rightarrow \text{GEO}(i = 0).$

Results

 $r_{GEO} = 42\,164\,\mathrm{km}$ Part A: $\Delta V_{tot}^S = 4.7107 \, \text{km/s}; \, \Delta V_{tot}^C = 4.2833 \, \text{km/s};$

Exercise 5

Consider an Earth-Mars transfer. Assuming the heliocentric transfer is a Hohmann transfer, evaluate

- the transfer duration Δt and the phasing angle (γ_1) between Earth and Mars at departure
- the mission ΔV and the excess of hyperbolic velocity v_{∞_H}

departing from a circular orbit around the Earth for a one-way mission towards Mars. It has a structural coefficient $\epsilon = \frac{m_s + m_p}{m_s} = 7$) and specific impulse $I_{sp} = 450$ s Now, consider an increase of 1% of the excess of hyperbolic velocity v_{∞} with respect to the

Hohmann transfer, and evaluate

- the new excess of hyperbolic velocity v_{∞}
- the launch window duration Δt_{LW}

Results

 $\Delta t = 256.62 \,\mathrm{days}, v_{\infty_h} = 2.946 \,\mathrm{km/s}, \gamma_{1_H} = 44.3 \,\mathrm{deg}$ $v_{\infty_1} = 2.975 \,\mathrm{km/s}, \, \gamma_{1'} = 45.16 \,\mathrm{deg}, \, \gamma_{1''} = 42.41 \,\mathrm{deg}, \, \Delta t_{LW} = 5.94 \,\mathrm{days}$

Exercise 6

Consider a spacecraft departing from the Earth for a one-way mission towards Mars. The heliocentric transfer is a Hohmann transfer. Evaluate the cost to insert the spacecraft in a capture orbit of period 1 Martian Day ($T_{\sigma^2} = 88\,775\,\mathrm{s}$) using

- a one-impulse strategy
- a two-impulse strategy
- a three-impulse strategy

Assume as minimum radius $r_{min} = 3597 \text{ km}$ (= altitude 200 km) and maximum radius $r_{max} = 200\,000 \text{ km}$.

Results

 $\Delta V_{1-imp} = 1.9007 \,\mathrm{km/s}, \,\Delta V_{2-imp} = 1.7085 \,\mathrm{km/s}, \,\Delta V_{3-imp} = 1.3293 \,\mathrm{km/s}.$

Exercise 7

Consider a spacecraft departing from the Earth for a one-way mission towards Mars. The heliocentric transfer is a Hohmann transfer. Evaluate the maximum theoretical inclination of the spacecraft orbit that can be achieved using a single flyby. Compare this results with the case of a flyby of minimum altitude $r_{min} = 3597$ km, that is, altitude 200 km.

Results

 $\Delta i_{th} = 6.3032 \deg, \ \Delta V_{r_{min}} = 6.2827 \deg.$