Spaceflight Mechanics Exercise Set M (Miscellaneous)

A.A. 2022-2023

November 28, 2022

Data

Sidereal day	$\mathcal{T}_{\text {sid }}=86164 \mathrm{~s}$
Solar day	$\mathcal{T}_{\text {sol }}=86400 \mathrm{~s}$
Earth grav. param.	$\mu_{\oplus}=398600.4 \mathrm{~km}^{3} / \mathrm{s}^{2}$

Exercise 1

A satellite is injected into a sub-orbital trajectory with perigee radius equal to 500 km and apogee radius 20000 km . Assume no drag.

- Evaluate semi-major axis and eccentricity
- Evaluate velocity and flight path angle at departure and arrival point (on the ground)
- Evaluate the range and the travel time
- Evaluate the velocity increment (ΔV) required to put the satellite circularize the orbit at the apocenter altitude.

Results

$a=10250 \mathrm{~km}, e=0.9512, V=9.279 \mathrm{~km}, \gamma=70.53 \mathrm{deg}$,
$s=6026 \mathrm{~km}, \Delta t=156.27 \mathrm{~min}, \Delta V=3.478 \mathrm{~km} / \mathrm{s}$

Exercise 2

A satellite is flying on an Molniya orbit, with Period $\mathcal{T}=0.5 \mathcal{T}_{\text {sol }}$, pericenter altitude $h_{p}=$ 1023 km , inclination $i=63.4 \mathrm{deg}$, RAAN $\Omega=60 \mathrm{deg}$, argument of pericenter $\omega=-90 \mathrm{deg}$. Evaluate:
a) position and velocity in cartesian components at the true anomaly 18 deg.
b) absolute Longitude and latitude of the subsatellite point
c) flight path angle γ and east-heading angle ζ at that anomaly

Results

$$
\begin{aligned}
& \boldsymbol{r}=[3953.8,413.2,-6425.2]^{T} \mathrm{~km}, \boldsymbol{v}=[3.999,8.477,1.547]^{T} \mathrm{~km} / \mathrm{s} \\
& \lambda_{a}=5.97 \mathrm{deg}, \phi=-58.25 \mathrm{deg}, \gamma=7.504 \mathrm{deg}, \zeta=31.67 \mathrm{deg}
\end{aligned}
$$

Exercise 3

Solve the Hohmann transfer between two circular orbits of period 90 min and 600 min , respectively.

Results

$\Delta V_{1}=1.926 \mathrm{~km} / \mathrm{s}, \Delta V_{2}=1.383 \mathrm{~km} / \mathrm{s}, \Delta V_{\text {tot }}=3.310 \mathrm{~km} / \mathrm{s}$

Exercise 4

A satellite is on circular orbit or radius 6600 km At time $t_{0}=0$, the satellite is on the vertical of Cape Canaveral ($28.5 \mathrm{deg} \mathrm{N}, 80.5 \mathrm{deg} \mathrm{W}$) and the velocity is directed toward East.
Part A: Design a mission to inject the satellite into a Geosyncronous (GEO) orbit, considering the following mission plans:

- one change of plane, separated maneuvers (S)
$\operatorname{LEO}\left(i=i_{L E O}\right) \rightarrow \operatorname{GTO}\left(i=i_{L E O}\right) \rightarrow \operatorname{GTO}(i=0) \rightarrow \operatorname{GEO}(i=0)$
- one change of plane, combined maneuvers (C)
$\operatorname{LEO}\left(i=i_{L E O}\right) \rightarrow \operatorname{GTO}\left(i=i_{L E O}\right) \rightarrow \operatorname{GEO}(i=0)$
Part B: Next, introducing a waiting orbit (WO) with apocenter on the GEO orbit, design a mission plan which allows to phase the satellite in GEO so that it belongs to the same meridian as Cape Canaveral. $\mathrm{LEO}\left(i=i_{L E O}\right) \rightarrow \mathrm{GTO}\left(i=i_{G T O}\right) \rightarrow \mathrm{WO}\left(i=i_{W O}\right) \rightarrow \mathrm{GEO}(i=0)$.

Results

$r_{G E O}=42164 \mathrm{~km}$
Part A: $\quad \Delta V_{\text {tot }}^{S}=4.7107 \mathrm{~km} / \mathrm{s} ; \Delta V_{\text {tot }}^{C}=4.2833 \mathrm{~km} / \mathrm{s}$;

Exercise 5

Consider an Earth-Mars transfer. Assuming the heliocentric transfer is a Hohmann transfer, evaluate

- the transfer duration Δt and the phasing angle $\left(\gamma_{1}\right)$ between Earth and Mars at departure
- the mission ΔV and the excess of hyperbolic velocity $v_{\infty_{H}}$
departing from a circular orbit around the Earth for a one-way mission towards Mars. It has a structural coefficient $\epsilon=\frac{m_{s}+m_{p}}{m_{s}}=7$) and specific impulse $I_{s p}=450 \mathrm{~s}$

Now, consider an increase of 1% of the excess of hyperbolic velocity v_{∞} with respect to the Hohmann transfer, and evaluate

- the new excess of hyperbolic velocity v_{∞}
- the launch window duration $\Delta t_{L W}$

Results

$\Delta t=256.62$ days, $v_{\infty_{h}}=2.946 \mathrm{~km} / \mathrm{s}, \gamma_{1_{H}}=44.3 \mathrm{deg}$
$v_{\infty_{1}}=2.975 \mathrm{~km} / \mathrm{s}, \gamma_{1^{\prime}}=45.16 \mathrm{deg}, \gamma_{1^{\prime \prime}}=42.41 \mathrm{deg}, \Delta t_{L W}=5.94$ days

Exercise 6

Consider a spacecraft departing from the Earth for a one-way mission towards Mars. The heliocentric transfer is a Hohmann transfer. Evaluate the cost to insert the spacecraft in a capture orbit of period 1 Martian Day ($T_{\sigma^{7}}=88775 \mathrm{~s}$) using

- a one-impulse strategy
- a two-impulse strategy
- a three-impulse strategy

Assume as minimum radius $r_{\text {min }}=3597 \mathrm{~km}(=$ altitude 200 km$)$ and maximum radius $r_{\max }=$ 200000 km .

Results
$\Delta V_{1-i m p}=1.9007 \mathrm{~km} / \mathrm{s}, \Delta V_{2-i m p}=1.7085 \mathrm{~km} / \mathrm{s}, \Delta V_{3-i m p}=1.3293 \mathrm{~km} / \mathrm{s}$.

Exercise 7

Consider a spacecraft departing from the Earth for a one-way mission towards Mars. The heliocentric transfer is a Hohmann transfer. Evaluate the maximum theoretical inclination of the spacecraft orbit that can be achieved using a single flyby. Compare this results with the case of a flyby of minimum altitude $r_{\text {min }}=3597 \mathrm{~km}$, that is, altitude 200 km .

Results

$\Delta i_{t h}=6.3032 \mathrm{deg}, \Delta V_{r_{m i n}}=6.2827 \mathrm{deg}$.

