ORBITAL MOTION IN MULTIBODY ENVIRONMENTS

- Introduction

When two of more celestial bodies affect the spacenaft motion, the space vehicle dynamics is no longer Keplexian, and the simultaneous gravitational attraction of the relevant celestial bodies is to be taken into account.
As a first step, some basic properties of the motion of a system of N massive boches are described.
Then, the motion of two massive boches subject to their mutual attraction, is described.
Finally, the restricted three-body problem is introduced and analyzed mi detail. In this dynamical framework, a single body (e.e., the spacenaft) has negligible mass with respect to the remaining two massive bodies, which one termed PrIMaries. The problem is ufensed to as "restricted" because the gravitational action of the spacecraft on the massive bodies is neglected, due to its mass, much smaller than those of the two primaries.
The circular restricted three-body problem (CR3BP) is especially useful (and appropriate) for investigating the motion of a space vehicle in the Earth -Moon system, where the patched conic approximation is relatively ina canate. of course, the some framework may be useful also for alternative systems, provided that the notion of the two primaries takes places along circular orbits.

PROBLEM OF N BODES
If N massive bodies one subject to their mutual attraction, then orbital motion is the urult of the simultanems action of the gravitational forces.
In an inatial frame, for a point mass m_{i}, the Newton law holds:

$$
m_{i} \ddot{R}_{i}=G \sum_{j=1, j \neq i}^{N} \frac{m_{i} m_{j}}{r_{i j}^{3}}\left(\underline{R_{j}}-\underline{R_{i}}\right) \quad r_{i j}=\left|\underline{R}_{i j}\right|=\left|\underline{R_{j}}-\underline{R_{i}}\right|
$$

where \underline{R}_{i} is the position vector of mass $m_{i} m_{i}$ an inertial frame centred at 0. Gravitational foes are internal forces for this system, and their sum is 0 . This circumstance implies that

$$
\begin{aligned}
& \sum_{i=1}^{N} m_{i} \ddot{R}_{i}=\sum_{\substack{i, j=1 \\
j \neq i}}^{N} G \frac{m_{i} m_{j}}{r_{i j}^{3}} \underline{r_{i j}}=\underline{0} \\
\Rightarrow & \left\{\begin{array}{ll}
\sum m_{i} \dot{R}_{i}=\underline{a} & \text { (1) } \quad \underline{a}, \underline{b}=\text { constant vectors } \\
\sum m_{i} \underline{R}_{i}=\underline{a} t+\underline{b} & \text { (2) } \quad \\
\text { (depending only on the } \\
\text { initial conditions }
\end{array}\right)
\end{aligned}
$$

\underline{a} and \underline{b} are equivalent to 6 scalar integrals.
The center of mass is defined as

$$
\underline{R_{c}}=\frac{\sum_{i}^{N} m_{i} R_{i}}{\sum_{i=1}^{N} m_{i}}
$$

and, due to (1) and (2), moves in rectilinear uniform notion because $\quad \dot{R}_{c}=\frac{1}{M} \sum_{i=1}^{N} m_{i} \frac{\dot{R}_{i}}{}=\underline{a}$

Moreover, using the equation en energy of a system of masses

$$
\frac{d \xi}{d t}=\underline{F} \cdot \dot{R}_{\underline{L}}=0 \text { because } \underline{E}=\underline{0} \text { (sum of external forces) }
$$

$\Rightarrow \xi=$ constant
For the problem of N bodies $U=-\sum_{\substack{i=1 \\ j=i+1}}^{N, N} \frac{G m_{i} m_{j}}{r_{i j}}$
therefore $\quad \varepsilon=\frac{1}{2} \sum_{i=1}^{N} m_{i} \underline{R_{i}} \cdot \underline{R_{i}}-\sum_{\substack{i=1 \\ j=i+1}}^{N} \frac{G m_{i} m_{j}}{r_{i j}}$
The constant energy depends again only on the initial conditions, and represents another scala quantity that preserves
Lastly, the angular momentum with respect to C (center of mass) can be evaluated. It is defined as

$$
\underline{H_{c}}=\sum_{i=1}^{N} \underline{r_{i}} \times m_{i} \dot{R}_{i} \quad \text { where } \underline{R_{i}}=\underline{R_{i}}-\underline{R_{c}}
$$

and its time derivative is

$$
\begin{aligned}
\underline{H}_{c} & =\sum_{i=1}^{N}\left(\underline{R_{i}}-\underline{\dot{R}_{c}}\right) \times m_{i} \underline{\dot{R}_{i}}+\sum_{i=1}^{N}\left(\underline{R_{i}}-\underline{R_{c}}\right) \times m_{i} \underline{\ddot{R}_{i}}= \\
& =-\underline{\dot{R}_{c}} \times \sum_{i=1}^{N} m_{i} \underline{\dot{R}_{i}}+\sum_{\substack{i=1 \\
N=1, j \neq i}}^{R_{i}} \times \frac{G m_{i} m_{j}}{n_{i j}^{3}}\left(\underline{R_{j}}-\underline{R_{i}}\right)-\underline{R_{c}} \times \sum_{i=1}^{N} m_{i} \underline{R_{i}} \\
& =-\dot{R}_{c} \times M \underline{\dot{R}_{c}}=0
\end{aligned}
$$

In the last steps the double sum is zero because the terms simplify in pairs. Moreover, the fact $\sum_{i=1}^{N} m_{i} \cdot \ddot{R}_{i}=\underline{0}$ wat proven previously

The center of mass can be assumed also as the origin 0^{\prime} of an alternative inertial frame. Letting $O^{\prime} \equiv C$

$$
\begin{aligned}
& \underline{H_{c}}=\sum_{i=1}^{N} \underline{R_{i}} \times m_{i} \underline{\dot{R}_{i}} \\
& \underline{H_{c}}=\sum_{i=1}^{N} \underline{R_{i}} \times m_{i} \underline{R_{i}}+\sum_{\substack{i, j=1 \\
i \neq j}}^{N, N} \underline{R_{i}} \times \frac{m_{i} m_{j} G}{m_{i j}^{3}}\left(\underline{R_{j}}-\underline{R_{i}}\right)=0
\end{aligned}
$$

i.e. the same result is found.

In the end, $\underline{H}_{C}=$ constant, and this is equivalent to conservation of 3 scalar quantities.
The plane orthogonal to \underline{H}_{c} is termed laplace plane

In short, the total number of realon integrals is 10 , i.e.

$$
\begin{aligned}
& \underline{a}, \underline{b}, \underline{H_{c}}, \varepsilon \quad(3 \text { components for each vector }+\varepsilon) \\
& \underline{R_{c}}=\frac{\underline{a} t+\underline{b}}{M}, \underline{H_{c}}=\text { const, } \varepsilon=\text { const }
\end{aligned}
$$

These 10 internals are specified once the initial conditions are known, and preserve in time regardless of the time evolution of each single point mass that composes the system.

Problem of Two bodies
If two body are subject to their mutual attraction, then they obey:

$$
\left\{\begin{array}{l}
m_{1} \frac{d^{2} R_{1}}{d t^{2}}=G \frac{m_{1} m_{2}}{r_{12}^{3}}\left(\underline{R_{2}}-\underline{R_{1}}\right)=:+\underline{F_{1}} \\
m_{2} \frac{d^{2} R_{2}}{d t^{2}}=G \frac{m_{1} m_{2}}{r_{12}^{3}}\left(\underline{R_{1}}-\underline{R_{2}}\right)=i+\underline{F_{2}}
\end{array}\right.
$$

where $\underline{F}_{1}+\underline{F}_{2}=\underline{0}$
The motion of mass 2 relative to 1 is governed by the equation for $\left(\underline{R_{2}}-R_{1}\right)$, ie.

$$
\begin{equation*}
\left[\frac{d^{2}\left(R_{2}-R_{1}\right)}{d t^{2}}=-\frac{G\left(m_{1}+m_{2}\right)}{r_{12}^{3}}\left(\underline{R_{2}}-\underline{R_{1}}\right)\right] \tag{1}
\end{equation*}
$$

i.e. the motion of 2 relative to 1 occurs in way like if the total mass $M=m_{1}+m_{2}$ is placed in the position of 1

The center of mass C is identified by

$$
\underline{R_{c}}=\frac{m_{1} R_{1}+m_{2} \underline{R}_{2}}{m_{1}+m_{2}}
$$

and can be proven to lie in the line that connects m_{1} and m_{2}

in fact, (a) $\underline{R}_{1}-\underline{R_{c}}=\frac{m_{2}}{M}\left(\underline{R_{1}}-\underline{R_{2}}\right)$
(b) $\underline{R}_{2}-R_{2}=\frac{m_{1}}{M}\left(R_{2}-R_{1}\right)$

$$
\Rightarrow \quad\left(\underline{R_{1}}-R_{c}\right) \uparrow \downarrow\left(\underline{R_{2}}-\underline{R_{C}}\right)
$$

The two relative positions are aligned and in opposite directions

Let $O^{-} \equiv C$ be the origin of a new inertial frame

$$
m_{1} \underline{R_{1}}+m_{2} \underline{R_{2}}=\underline{0}
$$

\Downarrow

$m_{1} R_{1}=m_{2} R_{2}$ at all times
Moreover, one obtains $r_{12}=R_{1}+R_{2}=R_{1}\left(1+\frac{m_{1}}{m_{2}}\right)=R_{2}\left(1+\frac{m_{2}}{m_{1}}\right)$
and $\left\{\begin{array}{l}\underline{R_{1}}=-\frac{m_{2}}{m_{1}} R_{2} \\ \underline{R_{2}}=-\frac{m_{1}}{m_{2}} R_{1}\end{array}\right.$
Using the previous relation (a), (b), (c), the motion of m_{1} and m_{2} with respect to O^{\prime} is governed by

$$
\left\{\begin{array}{l}
m_{1} \frac{d^{2} R_{1}}{d t^{2}}=-G \frac{m_{1} m_{2}}{R_{1}^{3} \frac{M^{3}}{m_{2}^{3}}}\left(\frac{m_{1}}{m_{2}}+1\right) \underline{R_{1}}=-G \frac{m_{1} m_{2}^{3}}{M^{2}} \frac{R_{1}}{R_{1}^{3}} \\
m_{2} \frac{d^{2} R_{2}}{d t^{2}}=-G \frac{m_{1} m_{2}}{R_{2}^{3} \frac{M^{3}}{m_{1}^{3}}}\left(\frac{m_{2}}{m_{1}}+1\right) \frac{R_{2}}{}=-G \frac{m_{2} m_{1}^{3}}{M^{2}} \frac{R_{2}}{R_{2}^{3}} \tag{2}\\
\text { i.e. }
\end{array}\right.
$$

$\left[(d) \frac{d^{2} R_{1}}{d t^{2}}=-G \frac{m_{2}^{3}}{M^{2}} \frac{R_{1}}{R_{1}^{3}}\right.$ and $\left.\frac{d^{2} R_{2}}{d t^{2}}=-G \frac{m_{1}^{3}}{M^{2}} \frac{R_{2}}{R_{2}^{3}}(e)\right]$
Equations (d) and (e) prove that the ABSOLUTE MOTION with respect to $C \equiv O^{\prime}$ is Keplevian, with equivalent masses $\frac{m_{2}^{3}}{M^{2}}$ acting on m_{1} and $\frac{m_{1}^{3}}{M^{2}}$ acting on m_{2}
Previously, it was found that also the relative Motion of 2 with respect to 1 and 1 with respect to 2 is Kaplerion, with equivalent mass M (wi both cases).

Moeovin, $\frac{R_{1}}{R_{2}}=\frac{m_{2}}{m_{1}}=$ cost., theufore each body uncles its apoapse (on priapse) at the same time as the other one This means that
$\frac{a_{1}\left(1-e_{1}\right)}{a_{2}\left(1-e_{1}\right)}=\underline{a_{1}\left(1+e_{1}\right)}$ ie. ratios bt periapse and apoapse coincide

$$
\begin{equation*}
\rightarrow \quad\left(1-e_{1}\right)\left(1+e_{2}\right)=\left(1+e_{1}\right)\left(1-l_{2}\right) \rightarrow\left[e_{1}=l_{2} \equiv e\right] \tag{3}
\end{equation*}
$$

The two conics (in their absolute motion) have the same eccentricity. Moreover $\frac{a_{1}}{a_{2}}=\left\{\frac{m_{2}}{m_{1}}\left(\Gamma_{92}+\Gamma_{A_{2}}\right)\right\} /\left(r_{92}+r_{A_{2}}\right)=\frac{m_{2}}{m_{1}}$.
The greater mass 1 has motion completely inside the ellapie of body 2 (of smaller mass) if

$$
a_{1}(1+e)<a_{2}(1-e)
$$

As $\frac{a_{1}}{a_{2}}=\frac{m_{2}}{m_{1}}$ one gets $\frac{m_{2}}{m_{1}}(1+e)<1-e \longrightarrow$

$$
\rightarrow \quad e\left(1+\frac{m_{2}}{m_{1}}\right)<1-\frac{m_{2}}{m_{1}} \quad \rightarrow \quad e<\frac{m_{1}-m_{2}}{M}
$$

(written under the assumption that $m_{1}>m_{2}$)

The mean motion is given by

$$
w^{2}=\frac{G \frac{m_{2}^{3}}{M^{2}}}{a_{1}^{3}}=\frac{G \frac{m_{1}^{3}}{M^{2}}}{a_{2}^{3}}
$$

but $\frac{m_{2}}{M}=\frac{m_{2}}{m_{1}+m_{2}}=\frac{\frac{m_{2}}{m_{1}}}{1+\frac{m_{2}}{m_{1}}}=\frac{\frac{a_{1}}{a_{2}}}{1+\frac{a_{1}}{a_{2}}}=\frac{a_{1}}{a_{1}+a_{2}}$

$$
\frac{m_{1}}{M}=\frac{m_{1}}{m_{1}+m_{2}}=\frac{\frac{m_{1}}{m_{2}}}{1+\frac{m_{1}}{m_{2}}}=\frac{\frac{a_{2}}{a_{1}}}{1+\frac{a_{2}}{a_{1}}}=\frac{a_{2}}{a_{1}+a_{2}}
$$

hence, one obtains

$$
\left[w^{2}=\frac{G M}{\left(a_{1}+a_{2}\right)^{3}}\right]
$$

(4) Mean motion

- Planet-satellite problem

If $m_{1}=$ planet mass and $m_{2}=$ satellite mass. Hen $m_{1}>m_{2} \simeq 0$ and the center of mas coincids with the planet center. Equation (2) becomes $\frac{d^{2} R_{2}}{d t^{2}}=-\frac{G m_{1}}{R_{2}^{3}} R_{2}$, ie. the classical Equation with a smigle attracting body
while

$$
w^{2}=\frac{G m_{1}}{a^{3}}
$$

The planet-satellite problem is also termed RESTRICTED PROBLEM OF TWO BODIES, because $m_{2} \ll m_{1}$ (thus m_{2} does not affect m_{1})

CIRCULAR RESTRICTED PROBLEM OF THREE BODIES (CR3BP)
Motion of a $3^{\text {re }}$ body that has negligible mass with respect to two massive bodien, termed the PRIMARIES, ie.

$$
m=m_{3} \ll m_{2}<m_{1}
$$

In other winds, the third body does not affect the remaining two bodies 1 and 2, which are assumed to describe sirculat obits around there mass center

The angular velocity of the two primaries is $\omega=\sqrt{\frac{G M}{R^{3}}}$ where $R=$ their constant distance

- Frames

Synodic reference frame
$\{\hat{\imath}, \hat{j}, \hat{k}\}$ rotates together with the two primaries
with $\hat{k} \uparrow \uparrow H$
(angular momentum H)
$\left\{\hat{c}_{1}, \hat{c}_{2}, \hat{c}_{3}\right\}$ martial axes
$\{\hat{\imath}, \hat{\jmath}, \hat{k}\}$ synodic axes

$$
\left[\begin{array}{l}
\hat{\imath} \\
\hat{\jmath} \\
\hat{k}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \omega t & \sin \omega t & 0 \\
-\sin \omega t & \cos \omega t & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\hat{c}_{1} \\
\hat{c}_{2} \\
\hat{c}_{3}
\end{array}\right]
$$

At $t=0$ they coincide

The position of m_{1} and m_{2} with respect to O^{\prime} (center of mass) is given by

$$
\begin{aligned}
&\left\{\begin{array}{l}
x_{2}-x_{1}=R \\
m x_{1}+m_{2} x_{2}=0
\end{array}\right. \\
& \rightarrow\left\{\begin{array}{l}
x_{1}=-\frac{m_{2}}{M} R \\
x_{2}=\frac{m_{1}}{M} R
\end{array}\right.
\end{aligned}
$$

 and $\left\{\begin{array}{ll}D U=R & \text { distance unit } \\ T U=\omega^{-1} & \text { time unit }\end{array} \Rightarrow G\left(m_{1}+m_{2}\right)=1 \frac{D U^{3}}{T U^{2}}\right.$ one obtains

$$
\left\{\begin{array} { l }
{ x _ { 1 } = - \mu R = - \mu D U } \\
{ x _ { 2 } = (1 - \mu) R = (1 - \mu) D U }
\end{array} \quad \left\{\begin{array}{l}
G m_{2}=\mu \frac{D U^{3}}{T U^{2}} \\
G m_{1}=(1-\mu) \frac{D U^{3}}{T U^{2}}
\end{array}\right.\right.
$$

One can choose 1 and 2 such that $m_{1}>m_{2} \Rightarrow \mu<\frac{1}{2}$

- Equations of motion

$$
\frac{d^{2} r}{d t^{2}}=-\frac{(1-\mu)\left(\underline{r}-\underline{R_{1}}\right)}{\left|\underline{\Omega}-\underline{R_{1}}\right|^{3}}-\frac{\mu\left(\underline{\Omega}-\underline{R_{2}}\right)}{\left|\underline{R}-\underline{R_{2}}\right|^{3}} \quad \begin{aligned}
& \text { omitting } D U \text { and } T U \\
& \text { henceforth }
\end{aligned}
$$

The position vector can be written in terms of its components in the rotating frame $(\hat{\imath}, \hat{\jmath}, \hat{k})$,

$$
\underline{r}=\left[\begin{array}{lll}
x & y & z
\end{array}\right]\left[\begin{array}{l}
\hat{\imath} \\
\hat{\jmath} \\
\hat{k}
\end{array}\right]=x \hat{\imath}+y \hat{\jmath}+z \hat{k}
$$

Because $\underline{\omega} \times \hat{\imath}=\hat{\jmath} \omega, \quad \underline{\omega} \times \hat{\jmath}=-\hat{\imath} \omega, \underline{\omega} \times \hat{k}=\underline{0}$
$(\underline{\omega}=\omega \hat{k})$ the left hand side of the previous vector equation becomes

$$
\begin{aligned}
\frac{d^{2} r}{d t^{2}} & =\frac{d}{d t}[\dot{x} \hat{\imath}+\dot{y} \hat{\jmath}+\dot{z} \hat{k}+x(\underline{\omega} \times \hat{\imath})+y(\underline{w} \times \hat{\jmath})+z(\underline{\omega} \times \hat{k})]= \\
& =\frac{d}{d t}[(\dot{x}-\omega y) \hat{\imath}+(\dot{y}+\omega x) \hat{\jmath}+\dot{z}]= \\
& =(\ddot{x}-\omega \dot{y}) \hat{\imath}+(\ddot{y}+\omega \dot{x}) \hat{\jmath}+\ddot{z}+\omega(\dot{x}-\omega y) \hat{\jmath}-\omega(\dot{y}+\omega x) \hat{\imath}= \\
& =\left(\ddot{x}-2 \omega \dot{y}-\omega^{2} x\right) \hat{\imath}+\left(\ddot{y}+2 \omega \dot{x}-\omega^{2} y\right) \hat{\jmath}+\ddot{z}
\end{aligned}
$$

Therefore, along the three rotating axes
i) $\ddot{x}-2 \omega \dot{y}-\omega^{2} x=-\frac{(1-\mu)(x+\mu)}{\left[(x+\mu)^{2}+y^{2}+z^{2}\right]^{3 / 2}}-\frac{\mu(x+\mu-1)}{\left[(x+\mu-1)^{2}+y^{2}+z^{2}\right]^{3 / 2}}$
$\hat{\jmath} \ddot{y}+2 w \dot{x}-w^{2} y=-\frac{(1-\mu) y}{\left[(x+\mu)^{2}+y^{2}+z^{2}\right]^{3 / 2}}-\frac{\mu y}{\left[(x+\mu-1)^{2}+y^{2}+z^{2}\right]^{3 / 2}}$
$\hat{k}) \ddot{z} \quad=-\frac{(1-\mu) z}{\left[(x+\mu)^{2}+y^{2}+z^{2}\right]^{3 / 2}}-\frac{\mu z}{\left[(x+\mu-1)^{2}+y^{2}+z^{2}\right]^{3 / 2}}$
In the previous expressions the denominators contain the instantaneous distance from mass 1 and mass 2.
The physical unit of $(1-\mu)$ and μ in mumuators is $\frac{D V^{3}}{T U^{2}}$
The physical mit of $(x+\mu)$ and $(x+\mu-1)$ in denominators is DU as well as in memeraters

- Jacobi integral

Letting $\quad \Omega=\frac{\omega^{2}}{2}\left(x^{2}+y^{2}\right)+\frac{1-\mu}{\left[(x+\mu)^{2}+y^{2}+z^{2}\right]^{1 / 2}}+\frac{\mu}{\left[(x+\mu-1)^{2}+y^{2}+z^{2}\right]^{1 / 2}}$
(Ω is also termed "potential function") the equations of motion can be rewritten as

$$
\left\{\begin{align*}
\ddot{x}-2 \omega \dot{y} & =\frac{\partial \Omega}{\partial x} \tag{1}\\
\ddot{y}+2 \omega \dot{x} & =\frac{\partial \Omega}{\partial y} \\
\ddot{z} & =\frac{\partial \Omega}{\partial z}
\end{align*}\right.
$$

(1) is multiplied by $\dot{x},(2)$ by $\dot{y},(3)$ by i, then one adds and obtains

$$
\begin{aligned}
& \dot{x} \ddot{x}+\dot{y} \ddot{y}+\dot{z} \ddot{z}=\dot{x} \frac{\partial \Omega}{\partial x}+\dot{y} \frac{\partial \Omega}{\partial y}+\dot{z} \frac{\partial \Omega}{\partial z} \\
& \rightarrow \frac{1}{2} \frac{d}{d t}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)=\frac{d \Omega}{d t} \rightarrow \frac{d}{d t}\left[\Omega-\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)\right]=0
\end{aligned}
$$

This means that the quantity
$c:=2 \Omega-\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)$ is constant
This is referred to as the JACOBI INTEGRAL.
As $C \alpha-\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)$ it is inturive that C is related to energy. In fact, C decreases as the energy inneases; of course, for specified initial conditions, the value of C does not change in time, and, due to this, C is an INTEGRAL of motion in the CR3BP

Zero velocity surfaces and curves
Zero velocity surfaces (m 3-d) and curves (in $2-d$) are the lou where $\dot{x}=\dot{y}=\dot{z}=0$.
These sunfaus (and curves) constrain the region where the spaceraft motion can take place. In fact

$$
\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}=2 \Omega(x, y, z)-c \geqslant 0
$$

Because Ω is a function of the space coordinates only (x, y, z), the inequality at the right. hand. side defines the region of allowed motion, which is termed also HILLS REGION.
Looking at $\quad 2 \Omega=\omega^{2}\left(x^{2}+y^{2}\right)+\frac{2(1-\mu)}{\left[(x+\mu)^{2}+y^{2}+z^{2}\right]^{1 / 2}}+\frac{2 \mu}{\left[(x+\mu-1)^{2}+y^{2}+z^{2}\right]^{1 / 2}}$
(i) if x, y are large
\rightarrow first term prevails, and is associated with
a cylinder with axis z

(ii) if $(x+\mu)^{2}+y^{2}+z^{2}$ is small

\rightarrow either $2^{\text {nd }}$ OR $3^{\text {rd }}$
term prevails, with two associated surfaces:
$\Rightarrow 2^{\text {nd }}$ term is a nearosphere about primary 1
$3^{\text {rd }}$ term is a near-sphere about primary 2

In the previous figure, the zero velocity surfaces are illustrated for a particular value of C. Motion is allowed
(i) In the proximity of primary 1, i.e. inside the near-sphese that surrounds primary 1;
(ii) In the proximity of primary 2 , i.e. inside the near. sphere that surrounds primary 2;
(iii) Outside the near-cylindrical surface with axis z.

Zero velocity curves are the sections of zero velocity surfues with the (x, y)-plane, and will be described ni greater detail in the following.

- Libration prints

Libration (or lagrange) prints are equilibrium points in the synodic frame, where the $3^{\text {rd }}$ body (i.e. the spacecraft) remains indefinitely, provided that it is located at these points with $\dot{x}=\dot{y}=\dot{z}=0 \quad$ (zero velocity in' (x, y, z))
These points are sought in the (x, y)-plane, i.e.
$z=0$ and $\dot{z}=0$ hold in the following.
Equilibrium means that $\dot{x}=0$ and $\dot{y}=0$
and also $\quad \ddot{x}=0$ and $\ddot{y}=0$
at libration points

These conditions yield
(A) $\ddot{x}=\omega^{2} x-\frac{(1-\mu)(x+\mu)}{\left[(x+\mu)^{2}+y^{2}\right]^{3 / 2}}-\frac{\mu(x+\mu-1)}{\left[(x+\mu-1)^{2}+y^{2}\right]^{3 / 2}}=0$
(B) $\ddot{y}=\omega^{2} y-\frac{(1-\mu) y}{\left[(x+\mu)^{2}+y^{2}\right]^{3 / 2}}-\frac{\mu y}{\left[(x+\mu-1)^{2}+y^{2}\right]^{3 / 2}}=0$
(1) collinear libration points

Equilibrium points are sought along the x-axis (i.e. $y=0$).
only (A) is needed, because (B) is satisfied if $y=0$;
(A) becomes

$$
w^{2} x-\frac{(1-\mu)(x+\mu)}{|x+\mu|^{3}}-\frac{\mu(x+\mu-1)}{|x+\mu-1|^{3}}=0
$$

Three cases occur
(a) $x+\mu<0 \rightarrow x<-\mu$
(b) $x+\mu>0$ and $x+\mu-1<0 \longrightarrow-\mu<x<1-\mu$
(c) $x+\mu-1>0 \rightarrow x>1-\mu$

In each case a quintic equation can be found (not reported for the sake of brevity): the only real admissible solution in the respective range $(a, b, o r c)$ provides the x-coordinate of the equilibrium point, in the previous 3 cases:
(a) Left exterior collinear libration point, denoted with L_{3}
(b) Interior collinear libration point, denoted with L_{1}
(c) Right exterior collinear libration point, denoted with L_{2}
(2) triangular (or equilateral) libration points If $y \neq 0$, then both (A) and (B) must vanish. Letting $\begin{cases}r_{1}:=\sqrt{(x+\mu)^{2}+y^{2}} & \text { distance from primary 1 } \\ r_{2}:=\sqrt{(x+\mu-1)^{2}+y^{2}} & \text { distance from primary 2 }\end{cases}$
(A) $\omega^{2} x-\frac{(1-\mu)(x+\mu)}{r_{1}^{3}}-\frac{\mu(x+\mu-1)}{r_{2}^{3}}=0$
(B) $\omega^{2} y-\frac{\mu y}{\eta_{2}^{3}}-\frac{(1-\mu) y}{r_{1}^{3}}=0$
where $\omega=1 \mathrm{Tu}^{-1}$

Using $\omega=1 T U^{-1}(B)$ becomes

$$
y\left[\pi_{1}^{3} r_{2}^{3}-\mu \pi_{1}^{3}-\pi_{2}^{3}+\mu \pi_{2}^{3}\right]=0
$$

the term in prenentheses vanishes if $r_{1}=r_{2}=1$ (DU) regardless of μ. Using $r_{1}=r_{2}=1$ (DU) in (A), one gets

$$
x-(1-\mu)(x+\mu)-\mu(x+\mu-1)=0
$$

Theufore also (A) is fulfilled, and this means that in the (x, y) the points $r_{1}=r_{2}=1$ DU are equilibruin points. Two such points exist, located above and below the x-axis, and termed equilateral or triangular points because each triangular libration print forms an equilateral triangle with the twa primaries. It is common to denote with
L_{4} the triangular point above the x-axis
L_{5} the triangular point under the x-axis

Location of libration print for two primaries (when $\mu<0.5$)
L_{4} and L_{5} form two equilateral triangles

- Function Ω at L_{i}

The function Ω is stationary at L_{i}; m fact

$$
\frac{\partial \Omega}{\partial x}=0 \quad \text { and } \quad \frac{\partial \Omega}{\partial y}=0 \quad \text { at } L_{i}
$$

However, Ω can have a minimum r maximum at L_{i} (or can be simply stationary). In order to find out if Ω has min on max at L_{i}, these are the steps:
(a) Calculate symbolically $\Omega_{x x}, \Omega_{y y}, \Omega_{x y}$ and evaluate these $a^{t} L_{i}$
(b) Calculate $\operatorname{det}\left[\begin{array}{ll}\Omega_{x x} & \Omega_{x y} \\ \Omega_{y x} & \Omega_{y y}\end{array}\right]=: H$
(c) Four cases can occur:
(i) $\Omega_{x x}, \Omega_{y y}>0$ and $H>0 \rightarrow \Omega$ has min value at L_{i}
(ii) $\Omega_{x x}, \Omega_{y y}<0$ and $H>0 \rightarrow \Omega$ has max value at L_{i}
(iii) $H=0 \rightarrow$ furthn derivatives needed
(iv) $H<0 \quad \rightarrow$ not max nor min

The results of the study of Ω at L_{i} are
(a) At L_{1}, L_{2}, L_{3} (collinear points) Ω has not a max or min value, i.e. it is simply stationary
(b) At $L_{4}, L_{5} \quad \Omega$ has the minimum value $\Omega_{\text {min }}$

$$
\Omega_{\min }=\Omega\left(L_{4}, L_{5}\right)=\frac{3}{2}-\frac{\mu}{2}(1-\mu)
$$

As Ω has the minimum value at L_{4} and L_{5}, the inequality $2 \Omega-C \geqslant 0$ (HILL'S REGION of allowed notion) is satisfied in the entire space if

$$
C<2 \Omega_{\text {min }}=3-\mu(1-\mu)
$$

In other words, if the initial conditions for the spacecraft are such that $C<2 \Omega_{\text {min }}$, then it can travel in the entire space, because no zero velocity surface exists.

- Special values of C

If the spacenaft is placed at L_{i} with zero velocity, then

$$
C_{i}=2 \Omega\left(L_{i}\right)
$$

Because the velocity is sew at L_{i}, the libration point belongs to the zero velocity surface (and curve, in the (x, y)-plane)
From the previous discussion

$$
C_{5,4}=2 \Omega\left(L_{4}, L_{5}\right) \leqslant 2 \Omega \text { at all points }
$$

Hence, the motion can take place m the entire space if

$$
C<C_{4,5}
$$

This means also that the zero velocity surfaces (and curves) disappear at $C=C_{4,5}$.
The geometry of the zero velocity curves vary as C varies, i.e. when the spacecraft initial conditions change
Let $\quad c_{i}=$ value of C when the zero velocity arse contains L_{i}.
several cases can occur:
(1) $C<C_{4,5}$: motion allowed in the entire space
(2) $C_{4.5}<C<C_{3}$: motion fubidden only in the proximity of L_{4} and L_{5}
(3) $C_{3}<C<C_{2}$: interior and exterior hansfers from primary 1 to 2 are feasible (interior transfus pass close to L_{1}, exterior tuampus pass close to L_{2})
(4) $C_{2}<C<C_{1}$: interior transfer from 1 to 2 are feasible; motion outside the greater curve is feasible no exterior transf at L_{2} is feasible
(5) $C_{1}<C$: no intervoi or exterior tramper is feasible; the spacecraft remains confined either (i) in the proximity of primary 1 , on (ii) ni the proximity of primary 2 , or (iii) outside the greater zero velocity curve
It is apparent that $C_{1}, C_{2}, C_{3}, C_{4,5}$ represent very meaningful values for understanding feasibility of a trajectory.
(2)

(4)

(3)

(5)

Th these figmes, the forbidden region is shaded (grey).
From (2) to (5) the energy decreases, and this means that Cincerases
The next figme portrays the coordinates of L_{i} as μ varies.
Moreover, for the Earth. Moon system $\left(\mu=\frac{1}{82.27}\right)$ the characteristic values of C_{1} through C_{4} are reported.

Function 2 $2(x, y)$

If this surface is cut with a horizontal plane associated with a specific value of C, then the region of allowed motion corresponds to the portion of surface above this plane.

Contour plot of $2 \Omega(x, y)$

This is obtained by cutting the preceding surface with different horizontal planes. Each plane is associated with a different value of C , therefore each curve corresponds to a different value C of the Jacobi integral. This means that in fact these curves are the zero velocity curves at different values of C

Position of the libration points (Cillinesn) as a function of μ.

$\mu=\frac{1}{32.27}$ for the Moon

$$
\begin{array}{ll}
C_{1}=3.18838273477815 \frac{D V^{2}}{T U^{2}} & \text { when } \\
C_{1}=2 \Omega\left(L_{1}\right) \\
C_{2}=3.17219608074121 \frac{\mathrm{DV}}{} \frac{V^{2}}{T U^{2}} & C_{2}=2 \Omega\left(L_{2}\right) \\
C_{3}=3.01215166144792 \frac{\Delta U^{2}}{T U^{2}} & C_{3}=2 \Omega\left(L_{3}\right) \\
C_{4}=2.9879926473692 \frac{D U^{2}}{T U^{2}} & C_{4}=2 \Omega\left(L_{4}\right)
\end{array}
$$

- Stability of libration prints

Let $\left(x_{0}, y_{0}\right)$ be the coordinates of a libration point; (ξ, η) are small displacements, i.e.

$$
\left\{\begin{array}{l}
x=x_{0}+\xi \\
y=y_{0}+\eta
\end{array} \quad \underline{r_{0}} \leftrightarrow\left(x_{0}, y_{0}\right)\right.
$$

Using $\omega=1 \mathrm{TU}^{-1}$, the equations of motion are expanded to finst rider, to yield

$$
\left\{\begin{array}{l}
\ddot{x}-2 \dot{y}=\Omega_{x} \rightarrow \ddot{x}_{0}+\ddot{\xi}-2\left(\dot{y}_{0}+\dot{\eta}\right)=\left.\Omega_{x}\right|_{\underline{\eta_{0}}}+\left.\Omega_{x x}\right|_{\underline{q_{0}}} \xi+\left.\Omega_{x y}\right|_{\underline{q}_{\underline{g}}} \eta \\
\ddot{y}+2 \dot{x}=\Omega_{y} \rightarrow \ddot{y}_{0}+\ddot{\eta}+2\left(\dot{x}_{0}+\dot{\xi}\right)=\left.\Omega_{y}\right|_{\underline{q_{\underline{q}}}}+\left.\Omega_{y x}\right|_{\underline{\Omega}_{0}} \xi+\left.\Omega_{y y}\right|_{\underline{\eta_{0}}} \eta
\end{array}\right.
$$

The partial derivatives of Ω are evaluated at n_{0}, here and henceforth, but $I_{r_{0}}$ is omitted, for the sake of brevity.
Because $\ddot{x}_{0}=\ddot{y}_{0}=0$ and $\Omega_{x}=\Omega_{y}=0$ (at \underline{r}_{0}), one obtains the linear, time-independent differential system

$$
\begin{aligned}
& \ddot{\xi}-2 \dot{\eta}=\Omega_{x x} \xi+\Omega_{x y} \eta \\
& \ddot{\eta}+2 \dot{\xi}=\Omega_{x y} \xi+\Omega_{y y} \eta
\end{aligned}
$$

Letting $\underline{z}=\left[\begin{array}{llll}\xi & \dot{\xi} & \eta & \dot{\eta}\end{array}\right]^{\top}$, the previous system can be rewritten as

$$
\underline{\underline{i}}=A \underline{\underline{z}} \text {, where } A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\Omega_{x x} & 0 & \Omega_{x y} & 2 \\
0 & 0 & 0 & 1 \\
\Omega_{y x} & -2 & \Omega_{y y} & 0
\end{array}\right]
$$

Stability of this linear differential system depends on the eigenvalues of A, given by solving

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=0 \\
\rightarrow & \lambda^{4}-\lambda^{2}\left(\Omega_{x x}+\Omega_{y y}-4\right)+\Omega_{x x} \Omega_{y y}-\Omega_{x y}^{2}=0
\end{aligned}
$$

where $\left\{\Omega_{x x}, \Omega_{y y}, \Omega_{x y}\right\}$ are evaluated at L_{i}
(1) collinear libration points

After several calculations one can obtain

$$
\left\{\begin{array}{l}
\Omega_{x x}+\Omega_{y y}-4=k_{1}-2 \\
\Omega_{x x} \Omega_{y y}-\Omega_{x y}^{2}=\left(1+2 k_{1}\right)\left(1-k_{1}\right)
\end{array}\right.
$$

where k_{1} is a constant, which can be proven to be $k_{1}>1$ for all collinear prints.
Because $k_{1}>1, \Omega_{x x} \Omega_{y y}-\Omega_{x y}^{2}<0$ and therefore a solution for λ^{2} exists such that $\lambda^{2}>0$
But $\lambda^{2}>0 \Rightarrow$ a positive and a negative seal eigenvalue
$\Rightarrow \lambda$ real and positive implies instability
i.e. collinear libration points are UNSTABLE

This means that if the spacenaft is placed in the proximity of $L_{i}(i=1,2,3)$, with small ξ and η, then its dynamics is divergent (UNSTABLE equilibrium)
Linear periodic solutions are found only if the spacenaft is placed "along" the stable eigenvector.
(2) Triangular libration points

After serval calculations one obtains

$$
\begin{align*}
& \Omega_{x x}=\frac{3}{4} \quad \Omega_{y y}=\frac{9}{4} \quad \Omega_{x y}= \pm \frac{3 \sqrt{3}}{4}(1-2 \mu) \\
\rightarrow & \left\{\begin{array}{l}
\Omega_{x x}+\Omega_{y y}-4=-1<0 \\
\Omega_{x x} \Omega_{y y}-\Omega_{x y}^{2}=\frac{27}{4} \mu(1-\mu)>0
\end{array}\right. \tag{a}
\end{align*}
$$

Condition (a) implies that λ^{2} has negative real part
However any pair of complex conjugate $\lambda_{1,2}^{2}$ with negative neal part admits

$$
\left\{\lambda_{1}^{(a)}, \lambda_{1}^{(b)}, \lambda_{2}^{(a)}, \lambda_{2}^{(b)}\right\}
$$

with positive real part (2 of them, see figme)

The only way for $\left\{\lambda_{1}^{(a)}, \lambda_{2}^{(b)}, \lambda_{2}^{(a)}, \lambda_{2}^{(b)}\right\}$ with real part ≤ 0 is having $\lambda_{1,2}^{2}$ real and negative. In addition to (a) and (b) the following condition must hold

$$
\begin{aligned}
& \left(\Omega_{x x}+\Omega_{y y}-4\right)^{2}-4\left(\Omega_{x x} \Omega_{y y}-\Omega_{x y}\right) \geqslant 0 \\
\rightarrow & 27 \mu^{2}-27 \mu+1 \geqslant 0
\end{aligned}
$$

This inequality has the following solution

$$
0 \leqslant \mu \leqslant \underbrace{\frac{1}{2}-\frac{\sqrt{69}}{18}}_{\sim 0.0385} \quad \text { OR } \quad \underbrace{\frac{1}{2}+\frac{\sqrt{69}}{18} \leqslant \mu \leqslant 1}_{\sim 0.9615}
$$

(a) If the two primaries have μ that satisfies one of these two inequalities, the equilibrium around L_{4}, L_{5} is NELTRALLY stabLE (according to the linear analysis)
(b) Instead, if $\quad \frac{1}{2}-\frac{\sqrt{69}}{18}<\mu<\frac{1}{2}+\frac{\sqrt{69}}{18}$
then the equilibrium about L_{4}, L_{5} is UNSTABLE
It is easy to check that for the Earth-Moon system condition (a) is satisfied

In summary
(a) Around L_{1}, L_{2}, L_{3} : UNSTABLE equilibrium
(b) Around $L_{41} L_{5}$: equilibrium is

$$
\begin{aligned}
& >\text { NEUTRALLY STABLE if } 0 \leqslant \mu \leqslant \frac{1}{2}-\frac{\sqrt{69}}{18} \text { on } \frac{1}{2}+\frac{\sqrt{69}}{18} \leqslant \mu \leqslant 1 \\
& >\text { UNSTABLE }
\end{aligned}
$$

