




































Earth gravitational harmonics 

Several gravitational models of increasing fidelity have been employed in the past to 

describe the gravitational field of the Earth, e.g. WGS-84, EGM-96, and JGM-2, to name 

a few. All of them are based upon using the expression of the gravitational potential 

written in terms of harmonics, associated with Legendre polynomials. 

In general, a celestial body with a specified geometry and mass distribution generates 

a gravitational potential that is the integral of the contribution of each infinitesimal mass 

dm that composes the body itself. With reference to the Earth, 
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where r is the distance between mass dm and the point at which the potential is evaluated, 

and G is the universal gravitation constant. After several analytical steps, one obtains the 

following expression for U 
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where ( )3 2 398600.4 km secE =  and ( ) 6378.136 kmER =  are the Earth gravitational 

parameter and equatorial radius, lmP  is the Legendre polynomial of degree l and order m, 

  is the latitude, g  is the geographical longitude of the point at which the potential is 

evaluated, and r is its distance from the mass center of the attracting body; lJ  is the 

coefficient associated with harmonic l, whereas 
lmJ  and lm  are coefficients associated 

with harmonics of degree l and order m. All these coefficients depend on the actual 

geometry and mass distribution of the Earth.  The polynomials lmP  can be calculated 

through the following relations: 
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In the previous expression of U different contributions can be distinguished: 

 

 



(a) zonal harmonics, depending only on latitude and associated with terms lJ , 

(b) sectoral harmonics, depending only on longitude and associated with terms 
llJ  

(i.e. terms 
lmJ  when l m= ), and 

(c) tesseral harmonics, depending on both longitude and latitude, and associated with 

terms 
lmJ . 

Zonal harmonics correspond to the terms of the geopotential that vanish at certain 

values of latitude. For instance, the term 2J  vanishes at latitudes 35.3 deg  and is 

representative of the Earth oblateness. Sectoral harmonics vanish at certain values of 

geographical longitude. As an example, harmonic 22J  vanishes at the geographical 

longitudes of 30.1, 120.1, 210.1, and 300.1 deg, and is related to the (modest) 

eccentricity of the Earth equator. Tesseral harmonics vanish at given latitudes and 

geographical longitudes in a way such that the equipotential lines divide the Earth in 

tiles. As a general rule, harmonic 
lmJ  has ( )l m−  parallels and m meridians as 

equipotential lines; some of them are illustrated in the next figure.  

 



Several harmonics of the gravitational field have been extensively studied and can be 

proven to be responsible of secular or periodic effects on the orbit elements of spacecraft 

orbiting the Earth. It is worth remarking that the first term of U, termed ( ) K EU r=  

hence forward, corresponds to the potential generated by a body with spherical symmetry 

(both in geometry and in mass distribution). Due to the Newton’s law, KU  yields the well 

known law of gravitation  
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where r identifies the position of a generic point with respect to the center of mass of the 

attracting body. The previous equation governs Keplerian motion, which is an excellent 

approximation of the actual motion of the planets around the Sun and represents an 

adequate approximation for analyzing exoatmospheric orbital motion around the Earth, at 

least for limited time intervals.  

Accuracy of the Earth gravitational model depends on the accuracy of the coefficients 

lmJ . Recently, as a result of a consistent measurement campaign from orbiting satellites, 

the EGM2008 gravitational model has been introduced. The first coefficients of the 

EGM2008 model are reported in the following: 
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It is worth noting that the term 2J , related to Earth oblateness, dominates among all 

harmonics. 

The expression of the Earth gravitational potential, expanded to a suitable order, 

yields the gravitational force (per mass unit) to the desired accuracy,  

 U=g   

where the operator   can be expressed either in an inertial or in a rotating reference 

frame. 
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