Advanced Spacecraft Dynamics

Academic year 22/23

Instructor Prof. Mauro Pontani

COURSE PROGRAM

* Chapter 1. Eulerian attitude dynamics

- Vectors, vectrices, dyads, and vector kinematics
- Overview on attitude kinematics
- Spacecraft modeled as a rigid body
- Alternate forms of the dynamics equations
- Spacecraft with a single wheel
- Dual-spin spacecraft
- Spacecraft with damper
- Spacecraft with wheel and damper
- Spacecraft with multiple wheels
- Spacecraft with single-gimbal gyroscope

* Chapter 2. Attitude dynamics of multibody spacecraft (Kane's method)

- Constraints
- Multibody tree structures
- Two bodies and a joint: velocities and partial velocities
- Generalized forces
- Kane's dynamical equations
- Two bodies and a joint: accelerations and dynamics equations
- Kane's equations for multibody spacecraft with tree structure
- Methodology for simulations
- Application: dynamics of a spacecraft with two appendages

* Chapter 3. Nonlinear attitude control using momentum exchange devices

- Introduction
- An overview on momentum exchange devices
- Common architectures for momentum devices arrays
- Steering laws for spacecraft equipped with SG-CMGs
- Steering law for spacecraft equipped with RWs
- Attitude tracking via nonlinear feedback
- Application: attitude tracking for a geostationary satellite
- Attitude pointing via nonlinear feedback
- Application: pointing maneuver

* Chapter 4. Nonlinear orbit control using continuous thrust

- Introduction
- Orbit dynamics
- Variable-thrust nonlinear orbit control
- Nonlinear control on semimajor axis, eccentricity, and inclination
- Application: nonlinear orbit control in medium Earth orbit
- Application: nonlinear orbit control in low Earth orbit

* Chapter 5. Finite-thrust orbit transfers

- Types of finite-thrust engines
- Equations of motion
- Minimum-time orbit transfers using CSI-low-thrust
- Minimum-fuel orbit transfers using CSI-finite-thrust
- Minimum-fuel orbit transfers using VSI-low-thrust
- Spacecraft attitude along orbit transfers
- Concluding remarks

* Chapter 6. Planetary entry

- Introduction
- Reference frames for trajectory and attitude
- General flight equations
- Entry heating
- Ballistic entry
- Gliding entry
- Overview of the Shuttle reentry trajectory (transatmospheric phase)
- Concluding remarks

* Chapter 7. An introduction to satellite constellations

- Introduction
- Repeating-ground-track orbits
- Multisynchronous constellations
- Concluding remarks

* Appendix A. Elements of stability theory

- Stability definitions
- Lyapunov's method
- LaSalle's invariance principle

* Appendix B. Lagrange planetary equations
 - Equations for orbit elements
 - Modified equinoctial elements
 - Gauss equations for modified equinoctial elements

 * Appendix C. Fundamentals of optimal control theory

 * Appendix C. Fundamentals of optimal control theory
 - Formulation of the problem
 - Optimality conditions

DIDACTIC MATERIAL

The topics of the course are addressed in the textbook

M. Pontani, Advanced Spacecraft Dynamics, Efesto, Rome, 2023

FINAL EXAM INFO (UNTIL A.Y. 22/23)

During the lectures, several homeworks are proposed. They must be returned by the due date in order to be evaluated. Homeworks are not mandatory.

The final exam consists of an oral session, articulated in three questions.
(1) a topic chosen by the student among those treated in the course or any research topic related to the course contents and developed with the Instructor's approval;
(2) a topic chosen by the Instructor;
(3) a topic chosen by the Instructor or comments and clarifications on the homeworks, if the student chose to solve and send the homeworks for their evaluation.

FINAL EXAM INFO (STARTING FROM A.Y. 23/24)

During the lectures, several homeworks are proposed. They must be returned by the due date in order to be evaluated. Homeworks are not mandatory.

The final exam consists of an oral session, articulated in three questions. Depending on the number of homeworks returned by the due date, 3 different modalities are defined:
(1) The student returned less than half of the homeworks
a. No homework is evaluated.
b. The exam is composed of 3 questions, chosen by the Instructor.
(2) The student returned more than half of the homeworks, but not all the homeworks
a. Homeworks are evaluated.
b. The exam is composed of 3 questions:

- question 1 chosen by the Instructor,
- question 2 chosen by the Instructor,
- question 3 focused on homeworks (comments and/or clarifications).
(3) The student returned all the homeworks
a. Homeworks are evaluated.
b. The exam is composed of 3 questions:
- question 1 chosen by the student among the topics treated in the course,
- question 2 chosen by the Instructor,
- question 3 focused on homeworks (comments and/or clarifications).

