Ritratto di irene.dipalma@uniroma1.it

Le lezioni del corso di FISICA [1011790] erogato per la Laurea Triennale in Tecnologie per la Conservazione e il Restauro dei Beni Culturali (L43) per l'Anno Accademico 2023/2024 inizieranno il giorno 26/02/2024 seguendo i seguenti orari:

lunedì ore 11:00-13:00 Aula G Edificio Cannizzaro;

mercoledì ore 11:00-13:00 Aula B Edificio Cannizzaro;

venerdì ore 11:00-13:00 Aula G Edificio Cannizzaro.

 

The lessons of the Physics Course [1011790] for the Bachelor's degree in Technologies for Conservation and Restoration of Cultural Heritage for the Academic Year 2023/2024 will begin on February 26, 2024 with the following schedule:

Monday time 11:00-13:00 Classroom G Building Cannizzaro;

Wednesday time 11:00-13:00 Classroom B Building Cannizzaro;

Friday time 11:00-13:00 Classroom G Building Cannizzaro.

 

-------------------------------------------------------------------------------------------------------------------------------------------------

 

Le lezioni del corso PARTICLE AND ASTROPARTICLE PHYSICS (1055885) erogato per la Laurea Magistrale in Astronomia e Astrofisica e la Laurea Magistrale in Fisica per l'Anno Accademico 2023/2024 inizieranno il giorno 25/09/2023 seguendo i seguenti orari:

lunedì ore 10:00-12:00 Aula 8, Edificio Fermi;

martedì ore 09:00-10:00 Aula 8, Edificio Fermi;

venerdì ore 10:00-12:00 Aula 8, Edificio Fermi.

 

The lessons of the PARTICLE AND ASTROPARTICLE PHYSICS (1055885) provided for the Master's degree in Astronomy and Astrophysics and the Master's Degree in Physics for the Academic Year 2023/2024 will begin on September 25, 2023 with the following schedule:

Monday time 10:00-12:00 Classroom 8, Fermi Building;

Tuesday time 09:00-10:00 Classroom 8, Fermi Building;

Friday time 10:00-12:00 Classroom 8, Fermi Building.

 

 

-------------------------------------------------------------------------------------------------------------------------------------------------

 

Ricevimento Studenti
Il docente riceve il martedì dalle 10 alle 12 e previo appuntamento via email

 

 

Office hours

The Professor will receive on Tuesday between 10 and 12 and by appointment through mail

 

-------------------------------------------------------------------------------------------------------------------------------------------------

Insegnamento Codice Anno Corso - Frequentare Bacheca
FISICA 1011790 2023/2024
ASTROPARTICLE PHYSICS 1055362 2023/2024
ASTROPARTICLE PHYSICS 1055362 2023/2024
FISICA 1011790 2022/2023
PARTICLE AND ASTROPARTICLE PHYSICS 1055885 2022/2023
PARTICLE AND ASTROPARTICLE PHYSICS 1055885 2022/2023
FISICA 1011790 2021/2022
FISICA 1011790 2020/2021
FISICA 1011790 2019/2020
FISICA 1011790 2018/2019
FISICA 1011790 2017/2018

Lunedì dalle 13 alle 15, e su appuntamento.

Curriculum Vitae et Studiorum of Irene Di Palma

March 2022 - present Associate Professor at Sapienza Università di Roma

From 29-03-2021 National Scientific Qualification as Professor of II level, sector of contest 02/C1, Astronomy, Astrophysics and Earth and Planets Physics.

2021 - present Local Group Leader for the KM3NeT Collaboration.

2019 - present Junior Research Fellow at the Sapienza School for Advanced Studies (SSAS).

March 2019 - February 2022 Tenure track position in Physics at the University of Roma "La Sapienza".

September 2017 - February 2019 INFN Postdoc Fellowship at the University of Roma "La Sapienza".

From 25-07-2017 National Scientific Qualification as Professor of II level, sector of contest 02/A1, Experimental physics of fundamental interactions.

September 2016 - August 2017 Oréal and UNESCO for Women in Science fellowship, University of Rome "La Sapienza" and INFN (National Institute for Nuclear Physics), working on Correlation data analysis between high energy neutrinos from ANTARES and Ultra High Energy Neutrinos from Auger and Telescope Array. Adviser: Prof. A. Capone.

September 2015 - August 2016 INFN Postdoc Fellowship at the University of Roma "La Sapienza". In collaboration with Dr. Dafne Guetta and Dr. Elena Amato, working on Constrains of hadronic content of Pulsar Wind Nebula. Adviser: Prof. A. Capone.

August 2014 - August 2015 Post-doc fellowship, International Max Planck Research School on Gravitational Wave Astronomy, Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut, Golm, Berlin working on the post-processing of the last scientific searches of Einstein@Home project.
Adviser: Dr. M. Alessandra Papa

August 2012 - August 2014 Post-doc fellowship, International Max Planck Research School on Gravitational Wave Astronomy, Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) and Leibniz Universität Hanover, Germany. Data analysis for the search of periodic gravitational wave signals from isolated compact objects, in the contest of Einstein@Home project Advisers: Prof. Bruce Allen, Dr. M. Alessandra Papa

February 2009 - August 2012 Doctoral Studies, Magna cum laude, International Max Planck Research School on Gravitational Wave Astronomy, Max-Planck-Institut für Gravitationsphysik, (Albert-Einstein-Institut) and Leibniz Universität Hanover, Germany
Thesis: The first search for coincident Gravitational Waves and High Energy Neutrinos
Advisers: Prof. Bruce Allen

26 June 2008 Master Degree in Astronomy and Astrophysics (110/110) cum laude at the University La Sapienza in Rome
Thesis: Neutrino fluxes detection from galactic sources with the underwater detector ANTARES
Advisers: Prof. Antonio Capone and Dr. Fabrizio Lucarelli

30 October 2006 Bachelor Degree in Physics and Astrophysics (110/110) cum laude at the University La Sapienza in Rome
Thesis: Reduction of thermal noise in the gravitational experiments: study of the last suspension stadium of VIRGO mirrors for cryogenic environments
Adviser: Prof. Fulvio Ricci

Prizes
2009 ARAP Prize for the best Master Degree Thesis in Astroparticle Physics
2016 Breakthrough Prize for the discovery of Gravitational Waves
2016 Oréal and UNESCO Prize for Women in Science
2016 Gruber Foundation Cosmology Prize Fellowship

Fellowship
2008: Fellowship INFN-NSF/LIGO at Columbia University of New York about Search method for coincident events from LIGO-VIRGO-IceCube-ANTARES detectors. Adviser: Prof. Szabolcs Marka

Teaching activity
2023 High Energy Astrophysics Class for the PhD course of the Department of Physics at the University of Rome La Sapienza;
2023 Particle and Astroparticle Physics Course for the Department of Physics at the University of Rome La Sapienza;
2023 Physics class for the Department of Environmental Science at the University of Rome La Sapienza;
2022 Physics class for the Department of Environmental Science at the University of Rome La Sapienza;
2021 Physics class for the Department of Environmental Science at the University of Rome La Sapienza;
2020 Physics class for the Department of Environmental Science at the University of Rome La Sapienza;
Lecturer (2019): teach "The new Era of Multi-messenger astrophysics" for the Astroparticle Physics Course;
2019 Physics class for the Department of Environmental Science at the University of Rome La Sapienza;
Lecturer (2018): teach "Multi-messenger astrophysics: prospects from latest discoveries" for the Astroparticle Physics Course;
Lecturer (2017): teach "Multi-messenger astrophysics: the new era of gravitational waves" for the Astroparticle Physics Course;
Teaching Assistant (2016) for the Mechanics class;
Lecturer (2015): teach "Theory of gravitational waves and their sources, detectors (AdvLIGO and AdvVirgo), multimessenger and recent results" for the Astroparticle Physics Course;
Teaching Assistant (2011): supervise undergraduate student for the topic Modified Newton Dynamics (MOND) at the Max-Planck-Institute Hannover;
Teaching Assistant (2010): supervise undergraduate student for the topic Hubble Space Telescope at the Max-Planck-Institute Hannover;
Teaching Assistant (2009): supervise undergraduate students for two main topics: 1) Black Holes, observations and wormhole; 2) Black Holes classification at the Max-Planck-Institute Hannover.

List of all peer-reviewed journal articles
1. Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering, S. Aiello et al, JHEP 03 (2022) 055
2. Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA, S. Aiello et al, JHEP 10 (2021) 180
3. Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA, S. Aiello et al, Eur.Phys.J.C 82 (2022) 26
4. The KM3NeT potential for the next core-collapse supernova observation with neutrinos, S. Aiello et al, Eur.Phys.J.C 81 (2021) 5, 445
5. Deep-sea deployment of the KM3NeT neutrino telescope detection units by self-unrolling, S. Aiello et al, JINST 15 (2020) 11, P11027
6. Event reconstruction for KM3NeT/ORCA using convolutional neural networks, S. Aiello et al,JINST 15 (2020) 10, P10005
7. All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run, R. Abbott et al, Phys.Rev.D 104 (2021) 10, 102001
8. All-sky search for short gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run, R. Abbott et al, Phys.Rev.D 104 (2021) 12, 122004
9. Calibration of Advanced Virgo and reconstruction of detector strain h(t) during the Observing Run O3, F. Acernese et al, et al, Class.Quant.Grav. 39 (2022) 4, 045006
10. All-sky Search for Continuous Gravitational Waves from Isolated Neutron Stars in the Early O3 LIGO Data, R. Abbott et al, Phys.Rev.D 104 (2021) 8, 082004
11. Observation of Gravitational Waves from Two Neutron Star Black Hole Coalescences, R. Abbott et al, Astrophys.J.Lett. 915 (2021) 1, L5
12. Search for intermediate mass black hole binaries in the third observing run of Advanced LIGO and Advanced Virgo, R. Abbott et al, Astron. Astrophys. 659 (2022) A84
13. Constraints on dark photon dark matter using data from LIGO s and Virgo s third observing run, R. Abbott et al, Phys.Rev.D 105 (2022) 6, 063030
14. Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo, R. Abbott et al, Astrophys.J. 921 (2021) 1, 80
15. Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo s third observing run, R. Abbott et al, Astrophys. J. 923 (2021) 1, 14
16. Constraints from LIGO O3 data on gravitational-wave emission due to r-modes in the glitching pulsar PSR J0537-6910, R. Abbott et al, Astrophys.J. 922 (2021) 1, 71
17. Search for neutrinos from the tidal disruption events AT2019dsg and AT2019fdr with the ANTARES telescope, A. Albert et al, Astrophys.J. 920 (2021) 1, 50
18. Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO s and Advanced Virgo s first three observing runs, R. Abbott et al, Phys.Rev.D 104 (2021) 2, 022005
19. Measurement of the atmospheric \nu_e and \nu_\mu energy spectra with the ANTARES neutrino telescope, A. Albert et al, Phys.Lett.B 816 (2021) 136228.
20. Upper Limits on the Isotropic Gravitational-Wave Background from Advanced LIGO s and Advanced Virgo s Third Observing Run, R. Abbott et al, Phys.Rev.D 104 (2021) 2, 022004
21. Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift During the LIGO-Virgo Run O3a, R. Abbott et al, Astrophys.J. 915 (2021) 2, 86
22. Constraints on Cosmic Strings Using Data from the Third Advanced LIGO Virgo Observing Run, R. Abbott et al, Phys.Rev.Lett. 126 (2021) 24, 241102.
23. ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis, A. Albert et al, Astrophys.J. 911 (2021) 1, 48.
24. Diving below the spin-down limit: Constraints on gravitational waves from the energetic young pulsar PSR J0537-6910, R. Abbott et al, Astrophys.J. 913 (2021) L27.
25. All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems, R. Abbott et al, Phys.Rev.D 103 (2021) 6, 064017.
26. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, R. Abbott et al, Phys.Rev.X 11 (2021) 021053.
27. Tests of general relativity with binary black holes from the second LIGOVirgo gravitational-wave transient catalog, R. Abbott et al, Phys.Rev.D 103 (2021) 12, 122002.
28. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, R. Abbott et al, Astrophys.J.Lett. 913 (2021) 1, L7.
29. ANTARES upper limits on the multi-TeV neutrino emission from the GRBs detected by IACTs, A. Albert et al, JCAP 03 (2021) 092.
30. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA, B.P. Abbott et al, Living Rev.Rel. 23 (2020) 1, 3.
31. Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector, F. Acernese et al, et al, Phys.Rev.Lett. 125 (2020) 13, 131101.
32. The Control Unit of the KM3NeT Data Acquisition System, S. Aiello et al, Computer Physics Communications, 2020, 256, 107433.
33. gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes, S. Aiello et al, Computer Physics Communications, 2020, 256, 107477.
34. GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_\sun, B.P. Abbott et al, Physical review letters, 2020, 125(10).
35. GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, B.P. Abbott et al, Physical Review D, 2020, 102(4), 043015.
36. Monte Carlo simulations for the ANTARES underwater neutrino telescope, A. Albert et al, JCAP 01 (2021) 064.
37. Constraining the contribution of Gamma-Ray Bursts to the high-energy diffuse neutrino flux with 10 yr of ANTARES data, A. Albert et al, Mon.Not.Roy.Astron.Soc. 500 (2020) 4, 5614-5628.
38. Observation of the cosmic ray shadow of the Sun with the ANTARES neutrino telescope, A. Albert et al, Phys.Rev.D 102 (2020) 12, 122007.
39. Combined search for neutrinos from dark matter self-annihilation in the Galactic Center with ANTARES and IceCube, A. Albert et al, Phys.Rev.D 102 (2020) 8, 082002.
40. Search for neutrino counterparts of gravitational-wave events detected by LIGO and Virgo during run O2 with the ANTARES telescope, A. Albert et al, Eur. Phys. J. C volume 80 (2020) 487.
41. ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky, A. Albert et al, Astrophys.J. 892 (2020) 92.
42. Search for dark matter towards the Galactic Centre with 11 years of ANTARES , A. Albert et al, Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 805, 135439.
43. A joint fermi-gbm and ligo/virgo analysis of compact binary mergers from the first and second gravitational-wave observing runs, Astrophysical Journal, 2020, 893(2), 100.
44. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo, B.P. Abbott et al, Physical Review D, 2020, 101(8), 084002.
45. The advanced Virgo longitudinal control system for the O2 observing run , F. Acernese et al, et al, Astroparticle Physics, 2020, 116, 102386.
46. A guide to LIGO-Virgo detector noise and extraction of transient gravitationalwave signals, B.P. Abbott et al, Classical and Quantum Gravity, 2020, 37(5), 055002.
47. Dependence of atmospheric muon flux on seawater depth measured with the first KM3NeT detection units: The KM3NeT Collaboration , M. Ageron et al, European Physical Journal C, 2020, 80(2), 99.
48. Model comparison from LIGO-Virgo data on GW170817 s binary components and consequences for the merger remnant, B.P. Abbott et al, Classical and Quantum Gravity, 2020, 37(4).
49. Model-independent search for neutrino sources with the ANTARES neutrino telescope, A. Albert et al, Astroparticle Physics 114, 2020.
50. Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light, F. Acernese et al, et al, Physical Review Letters 123(23), 2020.
51. Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model, B.P. Abbott et al, Physical Review D 100(12), 2019.
52. Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1, B.P. Abbott et al, Physical Review D 100(10), 2019.
53. Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO s Second Observing Run, B.P. Abbott et al, Physical Review Letters 123(16), 2019.
54. KM3NeT front-end and readout electronics system: Hardware, firmware, and software, S. Aiello et al, Journal of Astronomical Telescopes, Instruments, and Systems 5(4), 2019.
55. Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network, B.P. Abbott et al, Physical Review D 100(6), 2019.
56. Low-latency Gravitational-wave Alerts for Multimessenger Astronomy during the Second Advanced LIGO and Virgo Observing Run B.P. Abbott et al, Astrophys.J. 875 (2019) no.2, 161.
57. First Measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary Black hole Merger GW170814, M. Soares-Santos et al, Astrophys.J. 876 (2019) no.1, L7.
58. Searches for Continuous Gravitational Waves from 15 Supernova Remnants and Fomalhaut b with Advanced LIGO , B.P. Abbott et al, Astrophys. J. 875 (2019) no.2, 122.
59. Measuring the atmospheric neutrino oscillation parameters and constraining the 3+1 neutrino model with ten years of ANTARES data, A.Albert et al, JHEP 1906 (2019) 113.
60. New method to observe gravitational waves emitted by core collapse supernovae, P. Astone, P. Cerdá-Durán, I. Di Palma, M. Drago, F. Muciaccia, C. Palomba, and F. Ricci, Phys. Rev. D 98, 122002.
61. Binary Black Hole Population Properties Inferred from the First and Second Observing Runs of Advanced LIGO and Advanced Virgo , B.P. Abbott et al, Astrophys.J. 882 (2019) no.2, L24
62. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , B.P. Abbott et al, Phys.Rev. X9 (2019) no.3, 031040.
63. Tests of General Relativity with GW170817, B.P. Abbott et al, Phys.Rev.Lett. 123 (2019) no.1, 011102.
64. Search for Multi-messenger Sources of Gravitational Waves and Highenergy Neutrinos with Advanced LIGO during its first Observing Run, ANTARES and IceCube, A.Albert et al, Astrophys.J. 870 (2019) no.2, 134.
65. Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources, S. Aiello et al, Astropart.Phys. 111 (2019) 100-110.
66. Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817 , B.P. Abbott et al, strophys.J. 875 (2019) no.2, 160
67. A Fermi Gamma-ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-Wave Candidates in Advanced LIGO s First Observing Run , B.P. Abbott et al, Astrophys.J. 871 (2019) no.1, 90.
68. Constraining the p-mode g-mode tidal instability with GW170817, B.P. Abbott et al, Phys.Rev.Lett. 122 (2019) no.6, 061104.
69. Search for sub-solar mass ultracompact binaries in Advanced LIGO s first observing run, B.P. Abbott et al, Phys.Rev.Lett. 121 (2018) no.23, 231103.
70. Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes, A. Albert et al, Astrophys.J. 868 (2018) no.2, L20.
71. The cosmic ray shadow of the Moon observed with the ANTARES neutrino telescope, A. Albert et al, Eur.Phys.J. C78 (2018) no.12, 1006.
72. The Search for Neutrinos from TXS 0506+056 with the ANTARES Telescope, A. Albert et al, Astrophys.J. 863 (2018) no.2, L30.
73. The search for high-energy neutrinos coincident with fast radio bursts with the ANTARES neutrino telescope, A. Albert et al, Mon.Not.Roy.Astron.Soc. 482 (2019) no.1, 184-193.
74. A standard siren measurement of the Hubble constant from GW170817 without the electromagnetic counterpart, M. Fishbach et al., Astrophys. J. 871 (2019) no.1, L13.
75. Calibration of Advanced Virgo and Reconstruction of the Gravitational Wave Signal h(t) during the Observing Run O2 , F. Acernese et al, et al, Class.Quant.Grav. 35 (2018) no.20, 205004.
76. Properties of the binary neutron star merger GW170817, B.P. Abbott et al, Phys.Rev. X9 (2019) no.1, 011001.
77. GW170817: Measurements of neutron star radii and equation of state, B.P. Abbott et al, Phys.Rev.Lett. 121 (2018) no.16, 161101, arXiv:1805.11581
78. Search for Tensor, Vector, and Scalar Polarizations in the Stochastic
Gravitational-Wave Background, B.P. Abbott et al, Phys.Rev.Lett. 120 (2018) no.20, 201102
79. Full Band All-sky Search for Periodic Gravitational Waves in the O1 LIGO Data, B.P. Abbott et al, Phys.Rev. D97 (2018) no.10, 102003
80. Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817, B.P. Abbott et al, Astrophys. J. 851 (2017) no.1, L16
81. Estimation of the gravitational wave polarizations from a nontemplate search, I. Di Palma and M. Drago, Phys.Rev. D97 (2018) no.2, 023011.
82. GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence, B.P. Abbott et al, Astrophys.J. 851 (2017) no.2, L35.
83. Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817, B.P. Abbott et al, Astrophys.J. 851 (2017) no.1, L16.
84. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences, B.P. Abbott et al, Phys.Rev.Lett. 120 (2018) no.9, 091101.
85. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory, A.Albert et al, Astrophys.J. 850 (2017) no.2, L35.
86. On the Progenitor of Binary Neutron Star Merger GW170817, B.P. Abbott et al, Astrophys.J. 850 (2017) no.2, L40.
87. Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817, B.P. Abbott et al, Astrophys.J. 850 (2017) no.2, L39.
88. A gravitational-wave standard siren measurement of the Hubble constant, B.P. Abbott et al, Nature 551 (2017) no.7678, 85-88.
89. Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A, B.P. Abbott et al, Astrophys. J. 848 (2017) no.2, L13.
90. Multi-messenger Observations of a Binary Neutron Star Merger, B.P. Abbott et al, Astrophys.J. 848 (2017) no.2, L12.
91. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, B.P. Abbott et al, Phys.Rev.Lett. 119 (2017) no.16, 161101.
92. First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data, B.P. Abbott et al, Phys.Rev. D96 (2017) no.12, 122006, Erratum: Phys.Rev. D97 (2018) no.12, 129903.
93. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO s first observing run, B.P. Abbott et al, Class.Quant.Grav. 35 (2018) no.6, 065010
94. First search for nontensorial gravitational waves from known pulsars, B.P. Abbott et al, Phys.Rev.Lett. 120 (2018) no.3, 031104.
95. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, B.P. Abbott et al, Phys.Rev.Lett. 119 (2017) no.14, 141101.
96. An algorithm for the reconstruction of neutrino-induced showers in the ANTARES neutrino telescope, A.Albert et al, Astron.J. 154 (2017) no.6, 275.
97. First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data, B.P. Abbott et al, Phys.Rev. D96 (2017) no.12, 122004
98. All-sky Search for Periodic Gravitational Waves in the O1 LIGO Data, B.P. Abbott et al, Phys.Rev. D96 (2017) no.6, 062002.
99. Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-Based Cross-Correlation Search in Advanced LIGO Data, B.P. Abbott et al, Astrophys.J. 847 (2017) no.1, 47.
100. First all-flavour Neutrino Point-like Source Search with the ANTARES Neutrino Telescope, A.Albert et al, Phys.Rev. D96 (2017) no.8, 08200.
101. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 , B.P. Abbott et al, Phys.Rev.Lett. 118 (2017) no.22, 221101.
102. New Constraints on all flavour Galactic diffuse neutrino emission with the ANTARES telescope, A.Albert et al, Phys.Rev. D96 062001.
103. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO, B.P. Abbott et al, Phys.Rev. D96 (2017) no.2, 022001.
104. Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model, B.P. Abbott et al, Phys.Rev. D95 (2017) no.12, 122003.
105. Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube, A.Albert et al, Phys.Rev. D96 (2017) no.2, 022005.
106. An algorithm for the reconstruction of high-energy neutrino-induced particle showers and its application to the ANTARES neutrino telescope, A.Albert et al, Eur.Phys.J. C77 (2017) no.6, 419.
107. Search for relativistic magnetic monopoles with five years of the ANTARES detector data , A.Albert et al, JHEP 1707 (2017) 054
108. First search for gravitational waves from known pulsars with Advanced LIGO , B.P. Abbott et al, Astrophys.J. 839 (2017) no.1, 12.
109. Search for high-energy neutrinos from bright GRBs with ANTARES, A.Albert et al, Mon.Not.Roy.Astron.Soc. 469 (2017) 906.
110. Search for Dark Matter Annihilation in the Earth using the ANTARES Neutrino Telescope, A.Albert et al, Phys.Dark Univ. 16 (2017) 41-48.
111. Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope, A.Albert et al, Phys.Lett. B769 (2017) 249-254.
112. Directional limits on persistent gravitational waves from Advanced LIGO s first observing run, B.P. Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121102.
113. Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO s First Observing Run, B.P. Abbott et al, Phys.Rev.Lett. 118 (2017) no.12, 121101.
114. Intrinsic limits on resolutions in muon- and electron-neutrino charged current events in the KM3NeT/ORCA detector, S. Adri an-Mart inez et al, J. High Energ. Phys. (2017) 2017: 8.
115. Search for Gravitational Waves Associated with Gamma-Ray Bursts During the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B, B.P. Abbott et al, Astrophys.J. 841 (2017) no.2, 89.
116. Effects of waveform model systematics on the interpretation of GW150914, B.P. Abbott et al, Class.Quant.Grav. 34 (2017) no.10, 104002.
117. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run, B.P. Abbott et al, Phys.Rev. D95 (2017) no.4, 042003.
118. Time-dependent search for neutrino emission from x-ray binaries with the ANTARES telescope, A. Albert et al, JCAP 1704 (2017) no.04, 019.
119. Hierarchical follow-up of sub-threshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data, M. A. Papa et al, Phys.Rev. D94 (2016) no.12, 122006.
120. The basic physics of the binary black hole merger GW150914, B.P. Abbott et al, Annalen Phys. (2016).
121. Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, B.P. Abbott et al, Class.Quant.Grav. 34 (2017) no.4, 044001.
122. Upper limits on the rates of binary neutron star and neutron-star blackhole mergers from Advanced LIGO s first observing run, B.P. Abbott et al, Astrophys.J. 832 (2016) no.2, L21.
123. Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544, B.P. Abbott et al, Phys. Rev. D 95, 082005 2017.
124. Binary Black Hole Mergers in the first Advanced LIGO Observing Run, B.P. Abbott et al, Phys.Rev. X6 (2016) no.4, 041015.
125. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, B.P. Abbott et al, Phys.Rev.Lett. 116 (2016) no.24, 241103.
126. Revised predictions of neutrino fluxes from Pulsar Wind Nebulae, I. Di Palma, D. Guetta and E. Amato, Astrophys.J. 836 (2017) no.2, 159.
127. Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project, B.P. Abbott et al, Phys.Rev. D94 (2016) no.10, 102002.
128. Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 , B.P. Abbott et al, Astrophys.J.Suppl. 227 (2016) no.2, 14.
129. Directly comparing GW150914 with numerical solutions of Einstein s equations for binary black hole coalescence , B.P. Abbott et al, Phys. Rev. D 94, 064035, 2016.
130. Improved analysis of GW150914 using a fully spin-precessing waveform model, B.P. Abbott et al, Phys.Rev. X6 (2016) no.4, 041014.
131. Comprehensive All-sky Search for Periodic Gravitational Waves in the Sixth Science Run LIGO Data , B.P. Abbott et al, Phys.Rev. D94 (2016) no.4, 042002.
132. A First Targeted Search for Gravitational-Wave Bursts from Core-Collapse Supernovae in Data of First-Generation Laser Interferometer Detectors, B.P. Abbott et al, Phys.Rev. D94 (2016) no.10, 102001.
133. Search for transient gravitational waves in coincidence with short duration radio transients during 2007-2013, B.P. Abbott et al, Phys. Rev. D 93, 122008, 2016.
134. Supplement: Localization and broadband follow-up of the gravitationalwave transient GW150914, B.P. Abbott et al, Astrophys.J.Suppl. 225 (2016) no.1, 8.
135. Proceedings, 7th Very Large Volume Neutrino Telescope Workshop (VLVnT 2015) : Rome, Italy, September 14-16, 2015 , A. Capone (ed.), G. De Bonis (ed.), I. Di Palma (ed.), C. Perrina (ed.), EPJ Web Conf. 116 (2016)
136. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy, B.P. Abbott et al, Phys.Rev. D93 no.11, 112004, 2016.
137. Localization and broadband follow-up of the gravitational-wave transient GW150914, B.P. Abbott et al, The Astrophysical Journal Letters, Volume 826, Number 1 2016.
138. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube, B.P. Abbott et al, Phys. Rev. D 93, 122010, 2016.
139. Tests of general relativity with GW150914 , B.P. Abbott et al, Phys.Rev.Lett. 116 no.22, 221101, 2016.
140. GW150914: Implications for the stochastic gravitational wave background from binary black holes, B.P. Abbott et al, Phys.Rev.Lett. 116 no.13, 131102 , 2016.
141. Astrophysical Implications of the Binary Black-Hole Merger GW150914, B.P. Abbott et al, Astrophys.J. 818 no.2, L22, 2016.
142. Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , B.P. Abbott et al, Phys.Rev. D95 (2017) no.6, 062003.
143. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914, B.P. Abbott et al, Class.Quant.Grav. 33 no.13, 134001, 2016.
144. Observing gravitational-wave transient GW150914 with minimal assumptions, B.P. Abbott et al, Phys.Rev. D93 no.12, 122004, 2016.
145. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 , B.P. Abbott et al, Astrophys.J. 833 (2016) 1.
146. Properties of the binary black hole merger GW150914 , B.P. Abbott et al, Phys.Rev.Lett. 116 (2016) no.24, 241102.
147. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO , B.P. Abbott et al, Phys.Rev. D93 no.12, 122003, 2016.
148. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, B.P. Abbott et al, Phys.Rev.Lett. 116 no.13, 131103, 2016
149. Observation of Gravitational Waves from a Binary Black Hole Merger, B.P. Abbott et al, Phys.Rev.Lett. 116 no.6, 061102, 2016.
150. Letter of Intent for KM3NeT2.0, S. Adrian-Martinez et al., J. Phys. G: Nucl. Part. Phys. 43 084001, 2016.
151. First low frequency all-sky search for continuous gravitational wave signals, J. Aasi et al, Phys.Rev. D93 no.4, 042007, 2016.
152. A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers, J. Aasi et al, Phys. Rev. D93 no.4, 042006, 2016.
153. Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al., PRL 116, 061102, 2016.
154. Search for continuous gravitational waves from nine young supernova remnants, J. Aasi et al, arXiv:1412.5942, Astrophys.J. 813 (2015) 1, 39.
155. Directed search for gravitational waves from Scorpius X-1 with initial LIGO data, J. Aasi et al, arXiv:1412.0605, Phys.Rev. D91 (2015) 6, 062008.
156. Advanced LIGO, J. Aasi et al, arXiv:1411.4547, Class.Quant.Grav. 32 (2015) 074001.
157. Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data, J. Aasi et al, arXiv:1410.8310, Phys.Rev. D91 (2015) 2, 022004.
158. Characterization of the LIGO detectors during their sixth science run, J. Aasi et al, arXiv:1410.7764, Class.Quant.Grav. 32 (2015) 11, 115012.
159. Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors, J. Aasi et al, arXiv:1410.6211, Phys.Rev. D91 (2015) 2, 022003.
160. Multimessenger Search for Sources of Gravitational Waves and High-Energy Neutrinos: Results for Initial LIGO-Virgo and IceCube, M.G. Aartsen et al. arXiv:1407.1042, Phys. Rev. D 90, 102002.
161. Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data , J. Aasi et al., arXiv:1406.4556, Phys. Rev. Lett. 113 (2014) 23, 23110.
162. First all-sky search for continuous gravitational waves from unknown sources in binary systems, J. Aasi et al. arXiv:1405.7904, Phys. Rev. D 89 122004, 2014.
163. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO600, LIGO, and Virgo detectors, J. Aasi et al. arXiv:1405.1053, Phys. Rev. D 89, 122004, 2014.
164. Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run, J. Aasi et al. arXiv:1404.2199, Phys. Rev. D 89, 122003, 2014.
165. Search for gravitational waves associated with gamma-ray bursts detected by the InterPlanetary Network, J. Aasi et al. arXiv:1403.6639, Phys. Rev. Lett. 113, 011102, 2014.
166. Search for gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-Virgo data from 2005-2010 , J. Aasi et al. arXiv:1403.5306, Phys. Rev. D 89, 102006, 2014.
167. Implementation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data, J. Aasi et al. arXiv:1402.4974, Class.Quant.Grav. 31 (2014) 165014.
168. The NINJA-2 project: Detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations, J. Aasi et al. arXiv:1401.0939, Class. Quantum Grav. 31 115004, 2014.
169. Application of a Hough search for continuous gravitational waves on data from the 5th LIGO science run, J. Aasi et al. arXiv:1311.2409, Class. Quantum Grav. 31(8) 2014.
170. Constraints on cosmic (super)strings from the LIGO-Virgo gravitational wave detectors, J. Aasi et al. arXiv:1310.2384, Phys. Rev. Lett. 112, 131101 (2014).
171. First Searches for Optical Counterparts to Gravitational-wave Candidate Events, J. Aasi et al. arXiv:1310.2314, Astrophys.J.Suppl. 211 (2014).
172. A directed search for continuous Gravitational Waves from the Galactic Center, J. Aasi et al. arXiv:1309.6221, Phys. Rev. D 88, 102002 (2013).
173. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts, J. Aasi et al. arXiv:1309.6160, Phys. Rev. D 88 122004, 2013.
174. Gravitational waves from known pulsars: results from the initial detector era, J. Aasi et al. arXiv:1309.4027, Astrophys.J. 785 (2014) 119.
175. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network, J. Aasi et al. arXiv:1304.1775, Phys. Rev. D 88, 062001, 2013.
176. Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories, J. Aasi et al. arXiv:1304.0670.
177. Search for Gravitational Waves from Binary Black Hole Inspiral, Merger and Ringdown in LIGO-Virgo Data from 2009-2010, J. Aasi et al. arXiv:1209.6533, Phys. Rev. D 87, 022002 (2013).
178. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data, J. Aasi et al. arXiv:1207.7176, Rev. D 87, 042001 (2013).
179. A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007, Adrián- Martínez et al. arXiv:1205.3018, JCAP 1306 008, 2013.
180. Multi-messenger astronomy with gravitational waves and high-energy neutrinos, V. Van Elewyck et al. arXiv:1203.5192, Reviews of Modern Physics 85 (2013) 1401-1420.
181. Multi-messenger Science Reach and Analysis Method for Common Sources of Gravitational Waves and High-energy Neutrinos B. Baret et al. arXiv:1112.1140v1, 2012 PRD 85, 103004.
182. Bounding the Time Delay between High-energy Neutrinos and Gravitationalwave Transients from Gamma-ray Bursts, B. Baret et al. arXiv:1101.4669, Astropart.Phys.35:1-7, 2011.
183. Search for gravitational waves associated with gamma-ray bursts during LIGO science run 6 and Virgo science runs 2 and 3, M. Briggs et al. arXiv:1205.2216v1, Astrophys. J. 760 12, 2012. Impact factor: 6.733
184. Swift follow-up observations of candidate gravitational-wave transient events, P. Evans et al. arXiv:1205.1124, ApJS, 203, 28, 2012.
185. The characterization of Virgo data and its impact on gravitational-wave searches, J. Aasi et al. arXiv:1203.5613, Class. Quantum Grav. 29 155002, 2012.
186. Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO s Sixth and Virgo s Second and Third Science Runs, J. Abadie et al. arXiv:1203.2674, 2012.
187. Search for Electromagnetic Counterparts to LIGO-Virgo Candidates: Expanded Very Large Array, J. Lazio et al. , IAU Symposium, Volume 285, p. 67-70, arXiv:1203.0093, 2012.
188. All-sky search for gravitational-wave bursts in the second joint LIGOVirgo run, J. Abadie et al. arXiv:1202.2788, Phys. Rev. D 85 122007, 2012.
189. Search for Gravitational Waves from Intermediate Mass Binary Black Holes, J. Abadie et al. arXiv:1201.5999, Phys. Rev. D 85 102004, 2012.
190. Implications For The Origin Of GRB 051103 From LIGO Observations, J. Abadie et al. arXiv:1201.4413, Astrophys. J. 755 2, 2012.
191. First Low-Latency LIGO+Virgo Search for Binary Inspirals and their Electromagnetic Counterparts, J. Abadie et al. arXiv:1112.6005, Astron Astrophys 541 A155, 2012.
192. Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-1000 Hz, J. Abadie et al. arXiv:1112.5004, Phys. Rev. D 85 122001, 2012.
193. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO s Sixth Science Run and Virgo s Science Runs 2 and 3, J. Abadie et al. arXiv:1111.7314, Phys. Rev. D 85, 082002 , 2012.
194. All-sky Search for Periodic Gravitational Waves in the Full S5 LIGO Data, J. Abadie et al. arXiv:1110.0208, Phys. Rev. D85 022001, 2012.
195. Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts, J. Abadie et al. arXiv:1109.3498, Astron Astrophys 539, A124, 2012.
196. A gravitational wave observatory operating beyond the quantum shotnoise limit: Squeezed light in application, J. Abadie et al. arXiv:1109.2295, Nature Physics 7, 962, 2011.
197. Directional limits on persistent gravitational waves using LIGO S5 science data, J. Abadie et al. arXiv:1109:1809, Phys. Rev. Lett. 107, 271102 2011.
198. Beating the spin-down limit on gravitational wave emission from the Vela pulsar, J. Abadie et al. arXiv:1104.2712, Astrophys.J.737:93, 2011.
199. Search for gravitational waves from binary black hole inspiral, merger and ringdown, J. Abadie et al. arXiv:1102.3781, Phys.Rev.D83:122005, 2011.
200. Search for Gravitational Wave Bursts from Six Magnetars, J. Abadie et al. arXiv:1011.4079, Astrophys.J.734:L35, 2011.
201. A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar, J. Abadie et al. arXiv:1011.1357, Phys. Rev. D83 (2011) 042001, 2011. Impact Factor: 4.558
202. Calibration of the LIGO Gravitational Wave Detectors in the Fifth Science Run, J. Abadie et al. arXiv:1007.3973, Nucl.Instrum.Meth.A624:223-240, 2010.
203. First search for gravitational waves from the youngest known neutron star, J. Abadie et al. arXiv:1006.2535, Astrophys.J. 722:1504, 2010.
204. Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1, J. Abadie et al. arXiv:1005.4655, Phys. Rev. D 82, 102001, 2010. Impact Factor: 4.964
205. Sensitivity to Gravitational Waves from Compact Binary Coalescences Achieved during LIGO s Fifth and Virgo s First Science Run, J. Abadie et al. arXiv:1003.2481, 2010.
206. Predictions for the Rates of Compact Binary Coalescences Observable by Ground-based Gravitational-wave Detectors, J. Abadie et al. arXiv:1003.2480, Class.Quant.Grav.27:173001, 2010. Impact Factor: 3.098
207. All-sky search for gravitational-wave bursts in the first joint LIGOGEO-Virgo run, J. Abadie et al. arXiv:1002.1036, Phys.Rev.D81:102001, 2010.