DATA ANALYSIS AND DATA MINING
Channel 1
LUCA SALVATI
Lecturers' profile
Program - Frequency - Exams
Course program
1. General intro.
2. Operational Data mining.
3. Data base theory and big data.
4. Operational principles of multivariate statistics and data interpretation; Software for multivariate statistics.
5. Factor analysis and principal component analysis.
6. Cluster analysis.
7. Metric and non-metric multi-dimensional scaling (MDS).
8. Correspondence analysis and Canonical correlation analysis (CCA).
9. Regression analysis
Prerequisites
Linear algebra; Descriptive and inferential statistics
Books
Class notes (Google Drive)
Theory:
Salvati L. et al. (2025). Analisi dei dati. CISU, Roma (seconda edizione).
Exercises and examples:
Anzalone F.M - Maialetti M. - Salvati L. (2024). I territori del PNRR. Applicazioni economiche con indicatori statistici CISU, Roma.
Reading of a third book is compulsory for remote students:
Salvati L. (2024). Statistica, economia e sostenibilità. Indicatori per l'analisi regionale. Franco Angeli, Milano.
Free softwares for exercises.
Teaching mode
Class lesson. Laboratory with software.
Frequency
Class frequency
Exam mode
Written and oral; partial evaluations are possible during the class term; lab/project works allowed alone or in team
Bibliography
The same of above
Lesson mode
Class lesson. Laboratory with software.
- Lesson code10620828
- Academic year2025/2026
- CourseManagement of technologies, innovation and sustainability
- CurriculumGestione sostenibile d'impresa
- Year1st year
- Semester2nd semester
- SSDSECS-S/03
- CFU9
- Subject areaDiscipline Statistiche e Matematiche