DATA ANALYSIS AND DATA MINING
Channel 1
LUCA SALVATI
Lecturers' profile
Program - Frequency - Exams
Course program
1. General intro.
2. Operational Data mining.
3. Data base theory and big data.
4. Operational principles of multivariate statistics and data interpretation; Software for multivariate statistics.
5. Factor analysis and principal component analysis.
6. Cluster analysis.
7. Metric and non-metric multi-dimensional scaling (MDS).
8. Correspondence analysis and Canonical correlation analysis (CCA).
9. Regression analysis.
Prerequisites
Linear algebra; Descriptive and inferential statistics
Books
Slides in Google Drive
Theory:
Maialetti M. - Sateriano A. (2024). Analisi esplorativa dei dati. CISU, Roma (ultima edizione).
Exercises/applications:
Maialetti M. - Salvati L. (2024). Sostenibilità e resilienza. Analisi quantitativa e applicazioni economiche. Franco Angeli, Milano (ultima edizione).
A third book is adopted for remote students:
Orlandi V. - Maialetti M. - Salvati L. (2024). Indicatori territoriali e sviluppo locale. Verso un'economia del paesaggio. Carocci, Roma.
Free software
Teaching mode
Class lesson. Laboratory with software.
Frequency
Class frequency
Exam mode
Written and oral; partial evaluations are possible during the class term; lab/project works allowed alone or in team
Bibliography
The same of above
Lesson mode
Class lesson. Laboratory with software.
- Lesson code10592615
- Academic year2024/2025
- CourseManagement of technologies, innovation and sustainability
- CurriculumGestione sostenibile d'impresa
- Year1st year
- Semester2nd semester
- SSDSECS-S/01
- CFU9
- Subject areaStatistico-matematico