PLANNING AND REASONING
Obiettivi formativi
Questo corso introduce i concetti relativi alla pianificazione automatica e ai meccanismi di ragionamento logico dell'intelligenza artificiale. Lo scopo del corso e' quello di permettere allo studente di usare i sistemi esistenti di pianificazione automatica e di capire i loro meccanismi interni, in modo da poterli sfruttare nel modo migliore ed eventualmente estendere a fronte di problemi specifici. Inoltre, lo studente verrà messo in condizione di comprendere i fondamenti teorici alla base dei meccanismi di ragionamento logico usati in intelligenza artificiale.
Canale 1
ANDREA MARRELLA
Scheda docente
Programmi - Frequenza - Esami
Programma
Introduction to the Classical Planning model
Languages for Classical Planning
Search Algorithms: Blind and Heuristic
Domain-Independent Heuristics and Relaxations
Classical Planning: Complexity, Variations and Extensions
Getting to Know and Use a Planner
Reasoning about actions through Situation Calculus and Golog
Modeling dynamics of the domain of interest: Precondition Axioms, Successor State Axioms, the Frame Problem
Regression and Projection
Prerequisiti
Gli studenti che seguono questo corso dovrebbero avere conoscenze di analisi orientata agli oggetti, modellazione e progettazione, database relazionali e nozioni di base di probabilità acquisite nei corsi precedenti, nonché di logica e matematica discreta. È inoltre richiesta la conoscenza e la comprensione delle tecniche e dei concetti di base dell'intelligenza artificiale.
Testi di riferimento
Teaching material:
[1] Course slides, notes, and additional material available on this site.
[2] Artificial Intelligence: A Modern Approach, Global Edition, 4th Edition by Stuart Russell, Peter Norvig, Pearson, 2020
[3] A Concise Introduction to Models and Methods for Automated Planning, by Hector Geffner and Blai Bonet, Springer, 2013
[4] Automated Planning: Theory and Practice, by Malik Ghallab, Dana Nau, Paolo Traverso, Elsevier, 2001
[5] An Introduction to the Planning Domain Definition Language, by Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise, Springer, 2019
[6] Knowledge in Action, by Raymon Reiter, MIT Press, 2001
Frequenza
Frequenza non obbligatoria
Modalità di esame
The exam consists of 2 parts:
- A project (max 2 people)
- A written examination (2h)
The final exam mark is obtained as a weighted average of the two parts (project: 1/3, written exam: 2/3) and will be registered only when both parts have been passed. The mark for each part will be valid for the entire A.Y., until the session of October 2024, included. After that, all marks will be cleared.
--------------
Projects
--------------
P&R projects consist in developing:
(i) a planning model in PDDL and implementing it through one of the planning systems investigated during the course.
(ii) a theory of actions specified using Situation Calculus and Golog-based languages with Prolog.
The model should be able to solve a realistic problem. Student may propose their own problems, and are actually encouraged to do so. Projects must be discussed and approved by the teachers before being submitted and presented.
Discussions will take place in fixed dates during the A.Y.. Every project will be discussed separately with all team members. Every member is required to have full knowledge and understanding of every aspect of the project.
ANDREA MARRELLA
Scheda docente
Programmi - Frequenza - Esami
Programma
Introduction to the Classical Planning model
Languages for Classical Planning
Search Algorithms: Blind and Heuristic
Domain-Independent Heuristics and Relaxations
Classical Planning: Complexity, Variations and Extensions
Getting to Know and Use a Planner
Reasoning about actions through Situation Calculus and Golog
Modeling dynamics of the domain of interest: Precondition Axioms, Successor State Axioms, the Frame Problem
Regression and Projection
Prerequisiti
Gli studenti che seguono questo corso dovrebbero avere conoscenze di analisi orientata agli oggetti, modellazione e progettazione, database relazionali e nozioni di base di probabilità acquisite nei corsi precedenti, nonché di logica e matematica discreta. È inoltre richiesta la conoscenza e la comprensione delle tecniche e dei concetti di base dell'intelligenza artificiale.
Testi di riferimento
Teaching material:
[1] Course slides, notes, and additional material available on this site.
[2] Artificial Intelligence: A Modern Approach, Global Edition, 4th Edition by Stuart Russell, Peter Norvig, Pearson, 2020
[3] A Concise Introduction to Models and Methods for Automated Planning, by Hector Geffner and Blai Bonet, Springer, 2013
[4] Automated Planning: Theory and Practice, by Malik Ghallab, Dana Nau, Paolo Traverso, Elsevier, 2001
[5] An Introduction to the Planning Domain Definition Language, by Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise, Springer, 2019
[6] Knowledge in Action, by Raymon Reiter, MIT Press, 2001
Frequenza
Frequenza non obbligatoria
Modalità di esame
The exam consists of 2 parts:
- A project (max 2 people)
- A written examination (2h)
The final exam mark is obtained as a weighted average of the two parts (project: 1/3, written exam: 2/3) and will be registered only when both parts have been passed. The mark for each part will be valid for the entire A.Y., until the session of October 2024, included. After that, all marks will be cleared.
--------------
Projects
--------------
P&R projects consist in developing:
(i) a planning model in PDDL and implementing it through one of the planning systems investigated during the course.
(ii) a theory of actions specified using Situation Calculus and Golog-based languages with Prolog.
The model should be able to solve a realistic problem. Student may propose their own problems, and are actually encouraged to do so. Projects must be discussed and approved by the teachers before being submitted and presented.
Discussions will take place in fixed dates during the A.Y.. Every project will be discussed separately with all team members. Every member is required to have full knowledge and understanding of every aspect of the project.
- Codice insegnamento1052222
- Anno accademico2024/2025
- CorsoEngineering in Computer Science - Ingegneria Informatica
- CurriculumCurriculum unico
- Anno2º anno
- Semestre1º semestre
- SSDING-INF/05
- CFU6
- Ambito disciplinareAttività formative affini o integrative