PAOLO DELL'OLMO
Structure:
Dipartimento di SCIENZE STATISTICHE
SSD:
MATH-06/A

Notizie

Per gli studenti di Networks Analytics a.a. 2024-25 II semestre

 

Inizio lezioni: lunedi 3 marzo 2025

Termine lezioni: giovedi 29 maggio 2025

 

Orario Lezioni:

Lunedi ore 14:00-16:00 Edificio: CU007 Aula 13

(Palazzina Tuminelli)

Giovedi ore 15:00-19:00 Edificio: RM025 Aula informatica 15

 

Si raccomanda fortemente la frequenza in presenza, in particolare per le attività in aula informatica.

 

Bibliografia:

 

Cambridge University Press

 

David Easley,Jon Kleinberg

Networks, Crowds, and Markets: Reasoning about a Highly Connected World

Cambridge University Press

 

Eric D. Kolaczyk

Statistical Analysis of Network Data

Methods and Models, Springer

 

 

Contenuti e loro sequenza temporale:

 

1 Introduzione 

2 Teoria dei Grafi (1) 

3 Teoria dei Grafi (2) 

4 Algoritmi di Visita di Grafi 

5 Alberi ricoprenti 

6 Cammini minimi 

7 Random Networks  

8 Random Networks e Gephi 

9 Random Networks (2) 

10 Small World and the Watts Strogatz Model 

11 Esercitazione Analisi Reti 

12 Scale Free Networks (1) 

13 Scale Free Networks (2) e Progetti 

14 Lab Network Analysis - Practice 

15 Scale Free Networks Generation e Barabasi Albert Model 

16 Models of Preferential Attachment 

17 Centrality Measures

18 Introduzione a NetworkX 

19 Grafi Triangolati 

20 Esercitazione NetworkX 

21 Communities (1) 

22 Communities (2) - Maximal Cliques 

23 Network Clustering 

24 Degree Correlation (1) 

25 Degree Correlation (2) 

26 Network Robustness (1) 

27 Network Robustness (2) 

28 Spreading Phenomena (2) 

29 Spreading Phenomena (3)  

30 Network Robustness 

31 Cascading Behaviour in Networks 

32 Cascading Behaviour in Networks 2 

 

Il metodo didattico adottato prevede spiegazioni da parte del docente con riferimenti a materiale didattico (slides e libri) e dei momenti marcatamene interattivi in aula e in laboratorio con riferimento all'utilizzo delle metodiche del corso per problemi reali.

 

L'esame consiste in un test scritto con esercizi, domande a riposta aperta e domande chiuse e la realizzazione di un progetto. Il progetto permette un miglioramento del voto del test scritto fino a 2 punti.

 

Ricevimento studenti: Martedi alle 15, stanza 42, quarto piano, Dipartimento di Scienze Statistiche, preferibilemente inviare una mail preventiva.

 

For the Students of Data Driven Decision Making (DDDM) and Laboratory of Data Driven Decision Making (DDDMLAB) a.a. 2024-25 I semester.

 

Your physical presence during the lessons is strongly recommended, especially for the Laboratory of DDDM.

 

The teaching method adopted foresees explanations by the teacher with references to teaching material (slides and books) and markedly interactive moments in the classroom and in the laboratory with reference to the adoption of the course methods for real problems.

 

Suggested readings:

 

Denis Bouyssou and Philippe Vinke, Binary Relations and Preference Modeling

 

Simon French Decision Theory: a Introduction to the Mathematics of Rationality

Chapters 3 (paragraph 3.7 excluded), Chapters 4 (paragraph 4.5 excluded)

 

C.H. Antunes, M.J. Alves, J. Climacao

Multiobjective Linear and Integer Programming

Chapters 1, 2, 3, and the paragraphs 4.1, 4.2, 6.1, 6.2 A.

 

Ishizaka, P. Nemery

Multi-Criteria Decision Analysis

Chapters 1, 2, 4, 6, 7, 9

D. Bertsimas et al. The Analytics Edge Chapters 10, 12, 13, 14

 

The exam consists in a written text with some exercises and questions (open and with multiple choices). 

 

For the DDDM LAB we will work togher in the class using different software tools. The Lab will be concluded with an original project (small groups are allowed). To get the (3CFU) a final practical test has to be passed succefully.

 

Office hours (for students): Thesday at 3 pm, room 42, fourth floor, Dipartimento di Scienze Statistiche, please email me in advance.

 

Course Contents:

  1. Introduction to Data Driven Decision Making
  2. Introduction to Part I
  3. Data, Objectives, Measurements and Decisions: The Balanced Scorecard
  4. Choice Problems, Decision Maker Preferences and Ordinal Value Functions
  5. Properties of Preference Relations 
  6. Weak Orders and Ordinal Value Functions 
  7. Semiorders and Interval Orders – Combinatorial and Analytic Representations
  8. Multi Attribute Preferences   
  9. Analytic Hierarchy Process - AHP 
  10. ELECTRE Method 
  11. UTA+ Method
  12. Promethee Method 
  13. Introduction to Part II 
  14. Mathematical Programming for Decision Making
  15. Goal Programming 
  16. Integer and 0-1 Programming in Decision Making
  17. Multiobjective Optimization
  18. Exploring Objective Space: Scalarizing Techniques 
  19. Stem Method 
  20. Zionts-Wallenius Method
  21. Computational Complexity in Decision Making
  22. Introduction to Part III
  23. Collective Decision Making and Collective Intelligence
  24. Metric Approach to Collective Decision Making
  25. Fraud Detection and Relational Data Analysis 
  26. Auctions and Google Ads 
  27. Analytics for Kidney Allocation 
  28. Recommendation Systems