ELVIRA ZAPPALE
Structure:
Dipartimento di SCIENZE DI BASE ED APPLICATE PER L'INGEGNERIA
SSD:
MATH-03/A

Notizie

Il corso di Analisi Matematica II per entrambi i canali (A-O e P-Z) si terrà in modalità mista.

E' stata creata per ogni canale una classe virtuale Google classroom. I link sono:

 

https://classroom.google.com/c/MjU5NjE1MDc1NzA5?cjc=wp2aoeu (classe A-O)

 

https://classroom.google.com/c/MjU5NjE1MDc1MzYx?cjc=wx4vrlr (classe P-Z)

Qui si potrà stabilire il ricevimento e scambiare materiali.

 

Per le lezioni, in modalità mista, useremo lo Zoom d'aula 14 per la classe A-O:

https://uniroma1.zoom.us/j/3158724216

Co-docente è il prof. Emanuel Guariglia, emanuel.guariglia@uniroma1.it, Tutor è il dott. ing. Antonio Natale, antonio.natale@uniroma1.it

ID riunione: 315 872 4216 

 

Le lezioni si tengono in modalità mista in aula 14 il lunedì dalle 12 alle 14, il martedì dalle 8 alle 10 e il venerdì dalle 10 alle 12. Il mercoledì la lezione sarà tenuta dal prof. Emanuel Guariglia. 

 

 

Gli appelli della sessione estiva si terranno il 18/6/2021; il 16/7/2021 e il 20/9/2021 

 

Per le lezioni useremo lo Zoom d'aula 4 per la classe P-Z:

https://uniroma1.zoom.us/j/9713630379

ID riunione: 971 363 0379 

Le lezioni si tengono in modalità mista in aula 4 il lunedì dalle 14 alle 16, il martedì dalle 13 alle 15 e il venerdì dalle 8 alle 10 Il giovedì la lezione sarà tenuta dal prof. Emanuel Guariglia.

 

I link di Meet saranno usati per il ricevimento da concordare via e-mail.

 

Gli appelli della sessione estiva si terranno il 18/6/2021 il 16/7/2021 e il 20/9/2021 

 

Dal 15/3/2021 fino a nuova comunicazione le lezioni in presenza (e modalità mista) sono sospese. Si terranno, invece, secondo l'orario consueto, da remoto mediante piattaforma ZOOM accedendo con il link

https://uniroma1.zoom.us/j/86948485322?pwd=dXJQV2NWdnNyZWVFZ0xETE5WMmErZz09

ID riunione: 869 4848 5322
Passcode: 718390

Orari di ricevimento

su appuntamento via email.

Curriculum

General Data
Name Elvira Zappale
Date of birth 2 August 1975
Place of birth Salerno
Citizenship Italian
Position Associate professor
Address Dipartimento di Scienze di Base e Applicate per l’Ingegneria
Sapienza - Universit`a di Roma
via Antonio Scarpa, 16
00161, Roma
email elvira.zappale@uniroma1.it; PEC elvira.zappale@legalmail.it
Bibliographic identities
ˆ ORCID 0000-0001-7419-300X
ˆ Researcher ID G-8722-2015
ˆ SCOPUS ID 6506965520
ˆ MR Author ID 710816
ˆ Web of Science Researcher ID X-7722-2019
Studies and Italian scientific qualification
Laurea in Matematica
16/7/1997 Universit`a di
Salerno
vecchio ordinamento (cum laude)
Ph.D (legal duration
of studies:4
years)
29/1/2002 Universit`a di
Napoli ‘Federico
II’
Ph.D in Mathematics
Abilitazione Scientifica
Nazionale
05/2013 MIUR Associate professor in SC 01/A3
(Analisi Matematica, Probabilit`a
e Stati-stica Matematica) (SSD
MAT/05 - Analisi Matematica)
Abilitazione Scientifica
Nazionale
7/7/2021 MIUR Full professor of SC 01/A3 (Analisi
Matematica, Probabilit`a e Stati-stica
Matematica) (SSD MAT/05 - Analisi
Matematica)
Academic Positions
Periodo Istituzione Descrizione
1
Actual position
From 2/11/2020
Sapienza - Universit`a di
Roma
Associate Professor - SSD MAT/05 - Analisi
Matematica
Dipartimento di Scienze di Base e Applicate
per l’Ingegneria 1
From 1/1/2004 to
1/11/2020
Universit`a di Salerno Permanent researcher - Settore scientificodisciplinare
MAT/05 - Analisi Matematica
From 1/11/2001
ato 31/12/2003
Universit`a di Salerno Research fellowship at Dipartimento di Ingegneria
dell’ Informazione e Matematica
Applicata SSD MAT/05.
From 25/9/2000 to
10/6/2001
Carnegie Mellon University
Research Scholar at Center for Nonlinear
Analysis.
From 1/11/1997 to
31/10/2001
Universit`a di Napoli
‘Federico II’
Ph. D student.
From 7/1997 to
9/1997
Universit`a di Napoli
‘Federico II’
Research fellowship for Trimestre Intensivo
INdAM.
ˆ From 17/2/2012: ‘Investigator’- Funda¸cao para a Ciencia e a Tecnologia, Ministerio da
Educa¸cao e Ciencia, Portugal.
ˆ From 2015 to 2019 and from 2021: External member of CIMA Research Center at Universidade
de Evora, Portugal.
ˆ From 1/1/2004: responsibility of courses in MATH/03 A (previously MAT/05) at Engineering
faculties of Universities of Salerno and Roma ’La Sapienza’.
ˆ 4 courses for Ph.D students at ricerca Universit´a di Salerno, Universidade Nova de Lisboa
and ’Sapienza’ Universit`a di Roma.
ˆ Supervisors of Ph.D students, post doc and master students.
ˆ Lecturer for PCTO courses, offered by Sapienza, Universit´a di Roma.
ˆ Referee for journals and reviewer for Zentralblatt and Math. Rev.
ˆ member of several committees for recruitment.
ˆ organizer of more than 30 seminar.
ˆ 20 seminars given at Italian and foreigner institutions.
ˆ speaker in more than 50 conference and workshops in Italy and abroad.
ˆ invited speaker in several conferences and workshops and many minisymposia in Italy and
abroad.
ˆ invited in more than 20 institutions for research collaborations.
ˆ organizers of many conferences and workshops.
ˆ participants in several national and international research projects, few times as P.I.
ˆ evaluator for a research grant for the National Science Center, Poland.
Research projects in the past five years
1Facolt`a di Ingegneria Civile ed Industriale
2
- member of INdAM–GNAMPA projsecComposite Materials and Microstructures (2024)
- PI of the INdAM–GNAMPA project Prospettive nelle scienze dei materiali: modelli variazionali,
analisi asintotica e omogeneizzazione (2023)
- member of the project PRIN2022 “Mathematical Modeling of Heterogeneous Systems”.
- member of INdAM–GNAMPA project Analisi variazionale di modelli non-locali nelle scienze
applicate (2020)
- twice participant in the Sapienza’s research projects and once P.I.
Publications of the past 5 years
References
[1] Carvalho G., Matias J., Zappale E. Asymptotic analysis of a clamped thin multidomain
allowing for fractures and discontinuities, Communications in Contemporary Mathematics,
https://doi/10.1142/S0219199725500403
[2] Matias J., Santos P., Zappale E. Lower semicontinuity of nonlocal L∞ energies on SBV0(I). to
appear on Comptes Rendu Mathematique.
[3] Ferreira R., Matias J., Zappale E. Junction in a thin multi-domain for nonsimple grade two
materials in BH, Nonlinear Analysis: Real World Applications Volume 84, August 2025, 104322.
[4] Kr¨omer S., Kruz´ık M., Morandotti M., Zappale E., Measure-Valued Structured Deformations,
Journal of Nonlinear Science, 2024 34, n. 6, 100 doi=10.1007/s00332-024-10076-w,
[5] Bertazzoni G., Eleuteri M., Zappale E., Approximation of L∞ functionals with generalized Orlicz
norms Annali di Matematica Pura ed Applicata, 2024 doi=10.1007/s10231-024-01511-6.
[6] Fotso Tachago J., Nnang H., Tchinda F., Zappale E., (Two-scale) W1LΦ-gradient Young measures
and homogenization of integral functionals in Orlicz–Sobolev spaces, Journal of Elliptic and
Parabolic Equations, 2024, doi=10.1007/s41808-024-00294-4.
[7] Ribeiro A. M., Zappale E., Revisited convexity notions for L∞ variational problems, Revista
Matematica Complutense, 2024, doi=10.1007/s13163-024-00499-0.
[8] D’Elia L., Eleuteri M., Zappale E., Homogenization of supremal functionals in vectorial
setting (via Lp approximation) Analysis and Applications, 22(7), 2024, 1255-1302, DOI
10.1142/S0219530524500179.
[9] Eleuteri M., Prinari F., Zappale E., Asymptotic analysis of thin structures with point dependent
energy growth. Mathematical Models and Methods in the Applied Science, 2024, 34(8), 1401–1443.
[10] Barroso A. C., Matias J., Zappale E. Global Method for Relaxation for Multi-levelled Structured
Deformations, NODEA, 2024, 31(4), 50.
[11] Fotso Tachago J., Nnang H. and Zappale, E. Reiterated Homogenizazion of Nonlinear Degenerate
Elliptic Operators with non standard growth. Differential and Integral Equations 37, (9/10), 717-
752, 2024, DOI: 10.57262/die037-0910-717
[12] Gargiulo G., Zappale E., A sufficient condition for the lower semicontinuity of nonlocal supremal
functionals in the vectorial case. European Journal of Mathematics 9(3),75, 2023.
[13] Samoilenko, V., Samoilenko, Y., Zappale, E. Asymptotic step-like solutions of the singularly perturbed
Burgers equation. Physics of Fluids 35(6),067106
[14] Kreisbeck C., Ritorto A., Zappale, E. Cartesian convexity as the key notion in the variational
existence theory for nonlocal supremal functionals. Nonlinear Analysis, Theory, Methods and
Applications 225,113111, 2022.
[15] Amar M., Matias J., Morandotti M., Zappale E. Periodic homogenization in the context of structured
deformations. Zeitschrift fur Angewandte Mathematik und Physik 73(4),173 2022.
[16] Barroso A.C., Matias J., Morandotti M., Owen D.R., Zappale E. The Variational Modeling of
Hierarchical Structured Deformations, Journal of Elasticity, 2022, DOI 10.1007/s10659-022-09961-
w.
3
[17] Barroso A.C., Matias J., Zappale E. Relaxation for an optimal design problem in BD(Ω). Proceedings
of the Royal Society of Edinburgh Section A: Mathematics, 153(3), 2023, 721–763.
[18] Kroemer S., Kruz´ık M., Zappale E., Relaxation of functionals with linear growth: Interactions
of emerging measures and free discontinuities, Adv. Calc. Var., 16(4), 2023, 835–865
https://doi.org/10.1515/acv-2021-0063.
[19] Barroso A. C., Zappale E. An optimal design problem with non-standard growth and no concentration
effects Asymptotic Analysis. 2021 1 – 28, DOI: 10.3233/ASY-211711
[20] Matias J., Morandotti M., Owen D. R., Zappale, E. Upscaling and spatial localization of non-local
energies with applications to crystal plasticity, Math. Mech. Solids, 26, 2021, n. 7, 963–997.
[21] Fotso Tachago J. F., Gargiulo G., Nnang H., Zappale, E. Multiscale homogenization of integral
convex fucntionals in Orlicz Sobolev setting, Evolution Equations and Control Theory, 2021, 10,
n. 2, pages=297-320, doi=10.3934/eect.2020067.
[22] Kreisbeck C., Zappale E. Loss of double-integral character during relaxation, SIAM J. Math.
Anal., 53, 2021, n. 1, 351–385
[23] Fotso Tachago J., Nnang H., Zappale E. Reiterated periodic homogenization of integral functionals
with convex and nonstandard growth integrands, Opuscula Mathematica, 41, n. 1, 2021, 113-143,
doi=10.7494/OPMATH.2021.41.1.113.
[24] Kreisbeck C., Zappale E. Lower semicontinuity and relaxation of nonlocal L∞-functionals, Calc.
Var. Partial Differential Equations, 59, 2020, n. 4, Paper No. 138, 36.
[25] Prinari F., Zappale E. A relaxation result in the vectorial setting and Lp-approximation for
L∞-functionals, J. Optim. Theory Appl. 186, 2020, no. 2, 412–452.
[26] Ferreira R., Zappale E. Bending-torsion moments in thin multi-structures in the context of
nonlinear elasticity, Communications on Pure and Applied Analysis, 19, n. 3, 2020, 1747–1793,
doi=10.3934/cpaa.2020072.
[27] Barroso A.C., Zappale E. Relaxation for Optimal Design Problems with Non-standard Growth,
Applied Mathematics and Optimization, 80, n. 2, 2019, 515–546, doi=10.1007/s00245-017-9473-6,
issn=00954616.
Conference Proceedings
[28] Fotso Tachago J., Nnang H., Zappale E. Relaxation of periodic and nonstandard growth integrals
by means of two-scale convergence, Integral methods in science and engineering, 123–131,
Birkh¨auser/Springer, Cham. 2019.
[29] Fotso Tachago J., Gargiulo G., Nnang H., Zappale, E. Some Convergence Results on the
Periodic Unfolding Operator in Orlicz Setting. In: Constanda, C., Bodmann, B.E., Harris,
P.J. (eds) Integral Methods in Science and Engineering. IMSE 2022. Birkh¨auser, Cham. 2023
https://doi.org/10.1007/978-3-031-34099-4 29
[30] Barroso A.C., Matias J., Zappale E. Some Optimal Design Problems with Perimeter Penalisation.
In: Beir˜ao da Veiga, H., Minh´os, F., Van Goethem, N., Sanchez Rodrigues, L. (eds) Nonlinear
Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical Sciences,
vol 7. Springer, Cham. 2024, https://doi.org/10.1007/978-3-031-53740-0 1
[31] Gargiulo G., Samoilenko V., Zappale E. Power Law Approximation Results for Optimal Design
Problems. In: Beir˜ao da Veiga, H., Minh´os, F., Van Goethem, N., Sanchez Rodrigues, L. (eds)
Nonlinear Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical
Sciences, vol 7. Springer, Cham. 2024, https://doi.org/10.1007/978-3-031-53740-0 6
Submitted papers
ˆ G. Bertazzoni, A. Torricelli. E. Zappale, Homogenization of non-local integral functionals via
two-scale Young measures, submitted.
ˆ Fotso Tachago J., Gargiulo G., Nnang H., Zappale E. Homogenization of non-convex integral
energies with Orlicz growth via periodic unfolding
ˆ A. C. Barroso, E. Zappale ntegral representation for a relaxed optimal design problem for nonsimple
grade two materials, submitted.
4
ˆ Samolienko V, Samolienko Y, Zappale E., Nonlinear WKB method, asymptotic soliton-like
solutions of variable coefficients Korteweg–de Vries equations with singular perturbation and
Rankine–Hugoniot-type conditions.
5