
Notizie
Il corso di Analisi Matematica II per entrambi i canali (A-O e P-Z) si terrà in modalità mista.
E' stata creata per ogni canale una classe virtuale Google classroom. I link sono:
https://classroom.google.com/c/MjU5NjE1MDc1NzA5?cjc=wp2aoeu (classe A-O)
https://classroom.google.com/c/MjU5NjE1MDc1MzYx?cjc=wx4vrlr (classe P-Z)
Qui si potrà stabilire il ricevimento e scambiare materiali.
Per le lezioni, in modalità mista, useremo lo Zoom d'aula 14 per la classe A-O:
https://uniroma1.zoom.us/j/3158724216
Co-docente è il prof. Emanuel Guariglia, emanuel.guariglia@uniroma1.it, Tutor è il dott. ing. Antonio Natale, antonio.natale@uniroma1.it
ID riunione: 315 872 4216
Le lezioni si tengono in modalità mista in aula 14 il lunedì dalle 12 alle 14, il martedì dalle 8 alle 10 e il venerdì dalle 10 alle 12. Il mercoledì la lezione sarà tenuta dal prof. Emanuel Guariglia.
Gli appelli della sessione estiva si terranno il 18/6/2021; il 16/7/2021 e il 20/9/2021
Per le lezioni useremo lo Zoom d'aula 4 per la classe P-Z:
https://uniroma1.zoom.us/j/9713630379
ID riunione: 971 363 0379
Le lezioni si tengono in modalità mista in aula 4 il lunedì dalle 14 alle 16, il martedì dalle 13 alle 15 e il venerdì dalle 8 alle 10 Il giovedì la lezione sarà tenuta dal prof. Emanuel Guariglia.
I link di Meet saranno usati per il ricevimento da concordare via e-mail.
Gli appelli della sessione estiva si terranno il 18/6/2021 il 16/7/2021 e il 20/9/2021
Dal 15/3/2021 fino a nuova comunicazione le lezioni in presenza (e modalità mista) sono sospese. Si terranno, invece, secondo l'orario consueto, da remoto mediante piattaforma ZOOM accedendo con il link
https://uniroma1.zoom.us/j/86948485322?pwd=dXJQV2NWdnNyZWVFZ0xETE5WMmErZz09
ID riunione: 869 4848 5322
Passcode: 718390
Orari di ricevimento
su appuntamento via email.
Curriculum
General Data
Name Elvira Zappale
Date of birth 2 August 1975
Place of birth Salerno
Citizenship Italian
Position Associate professor
Address Dipartimento di Scienze di Base e Applicate per l’Ingegneria
Sapienza - Universit`a di Roma
via Antonio Scarpa, 16
00161, Roma
email elvira.zappale@uniroma1.it; PEC elvira.zappale@legalmail.it
Bibliographic identities
ORCID 0000-0001-7419-300X
Researcher ID G-8722-2015
SCOPUS ID 6506965520
MR Author ID 710816
Web of Science Researcher ID X-7722-2019
Studies and Italian scientific qualification
Laurea in Matematica
16/7/1997 Universit`a di
Salerno
vecchio ordinamento (cum laude)
Ph.D (legal duration
of studies:4
years)
29/1/2002 Universit`a di
Napoli ‘Federico
II’
Ph.D in Mathematics
Abilitazione Scientifica
Nazionale
05/2013 MIUR Associate professor in SC 01/A3
(Analisi Matematica, Probabilit`a
e Stati-stica Matematica) (SSD
MAT/05 - Analisi Matematica)
Abilitazione Scientifica
Nazionale
7/7/2021 MIUR Full professor of SC 01/A3 (Analisi
Matematica, Probabilit`a e Stati-stica
Matematica) (SSD MAT/05 - Analisi
Matematica)
Academic Positions
Periodo Istituzione Descrizione
1
Actual position
From 2/11/2020
Sapienza - Universit`a di
Roma
Associate Professor - SSD MAT/05 - Analisi
Matematica
Dipartimento di Scienze di Base e Applicate
per l’Ingegneria 1
From 1/1/2004 to
1/11/2020
Universit`a di Salerno Permanent researcher - Settore scientificodisciplinare
MAT/05 - Analisi Matematica
From 1/11/2001
ato 31/12/2003
Universit`a di Salerno Research fellowship at Dipartimento di Ingegneria
dell’ Informazione e Matematica
Applicata SSD MAT/05.
From 25/9/2000 to
10/6/2001
Carnegie Mellon University
Research Scholar at Center for Nonlinear
Analysis.
From 1/11/1997 to
31/10/2001
Universit`a di Napoli
‘Federico II’
Ph. D student.
From 7/1997 to
9/1997
Universit`a di Napoli
‘Federico II’
Research fellowship for Trimestre Intensivo
INdAM.
From 17/2/2012: ‘Investigator’- Funda¸cao para a Ciencia e a Tecnologia, Ministerio da
Educa¸cao e Ciencia, Portugal.
From 2015 to 2019 and from 2021: External member of CIMA Research Center at Universidade
de Evora, Portugal.
From 1/1/2004: responsibility of courses in MATH/03 A (previously MAT/05) at Engineering
faculties of Universities of Salerno and Roma ’La Sapienza’.
4 courses for Ph.D students at ricerca Universit´a di Salerno, Universidade Nova de Lisboa
and ’Sapienza’ Universit`a di Roma.
Supervisors of Ph.D students, post doc and master students.
Lecturer for PCTO courses, offered by Sapienza, Universit´a di Roma.
Referee for journals and reviewer for Zentralblatt and Math. Rev.
member of several committees for recruitment.
organizer of more than 30 seminar.
20 seminars given at Italian and foreigner institutions.
speaker in more than 50 conference and workshops in Italy and abroad.
invited speaker in several conferences and workshops and many minisymposia in Italy and
abroad.
invited in more than 20 institutions for research collaborations.
organizers of many conferences and workshops.
participants in several national and international research projects, few times as P.I.
evaluator for a research grant for the National Science Center, Poland.
Research projects in the past five years
1Facolt`a di Ingegneria Civile ed Industriale
2
- member of INdAM–GNAMPA projsecComposite Materials and Microstructures (2024)
- PI of the INdAM–GNAMPA project Prospettive nelle scienze dei materiali: modelli variazionali,
analisi asintotica e omogeneizzazione (2023)
- member of the project PRIN2022 “Mathematical Modeling of Heterogeneous Systems”.
- member of INdAM–GNAMPA project Analisi variazionale di modelli non-locali nelle scienze
applicate (2020)
- twice participant in the Sapienza’s research projects and once P.I.
Publications of the past 5 years
References
[1] Carvalho G., Matias J., Zappale E. Asymptotic analysis of a clamped thin multidomain
allowing for fractures and discontinuities, Communications in Contemporary Mathematics,
https://doi/10.1142/S0219199725500403
[2] Matias J., Santos P., Zappale E. Lower semicontinuity of nonlocal L∞ energies on SBV0(I). to
appear on Comptes Rendu Mathematique.
[3] Ferreira R., Matias J., Zappale E. Junction in a thin multi-domain for nonsimple grade two
materials in BH, Nonlinear Analysis: Real World Applications Volume 84, August 2025, 104322.
[4] Kr¨omer S., Kruz´ık M., Morandotti M., Zappale E., Measure-Valued Structured Deformations,
Journal of Nonlinear Science, 2024 34, n. 6, 100 doi=10.1007/s00332-024-10076-w,
[5] Bertazzoni G., Eleuteri M., Zappale E., Approximation of L∞ functionals with generalized Orlicz
norms Annali di Matematica Pura ed Applicata, 2024 doi=10.1007/s10231-024-01511-6.
[6] Fotso Tachago J., Nnang H., Tchinda F., Zappale E., (Two-scale) W1LΦ-gradient Young measures
and homogenization of integral functionals in Orlicz–Sobolev spaces, Journal of Elliptic and
Parabolic Equations, 2024, doi=10.1007/s41808-024-00294-4.
[7] Ribeiro A. M., Zappale E., Revisited convexity notions for L∞ variational problems, Revista
Matematica Complutense, 2024, doi=10.1007/s13163-024-00499-0.
[8] D’Elia L., Eleuteri M., Zappale E., Homogenization of supremal functionals in vectorial
setting (via Lp approximation) Analysis and Applications, 22(7), 2024, 1255-1302, DOI
10.1142/S0219530524500179.
[9] Eleuteri M., Prinari F., Zappale E., Asymptotic analysis of thin structures with point dependent
energy growth. Mathematical Models and Methods in the Applied Science, 2024, 34(8), 1401–1443.
[10] Barroso A. C., Matias J., Zappale E. Global Method for Relaxation for Multi-levelled Structured
Deformations, NODEA, 2024, 31(4), 50.
[11] Fotso Tachago J., Nnang H. and Zappale, E. Reiterated Homogenizazion of Nonlinear Degenerate
Elliptic Operators with non standard growth. Differential and Integral Equations 37, (9/10), 717-
752, 2024, DOI: 10.57262/die037-0910-717
[12] Gargiulo G., Zappale E., A sufficient condition for the lower semicontinuity of nonlocal supremal
functionals in the vectorial case. European Journal of Mathematics 9(3),75, 2023.
[13] Samoilenko, V., Samoilenko, Y., Zappale, E. Asymptotic step-like solutions of the singularly perturbed
Burgers equation. Physics of Fluids 35(6),067106
[14] Kreisbeck C., Ritorto A., Zappale, E. Cartesian convexity as the key notion in the variational
existence theory for nonlocal supremal functionals. Nonlinear Analysis, Theory, Methods and
Applications 225,113111, 2022.
[15] Amar M., Matias J., Morandotti M., Zappale E. Periodic homogenization in the context of structured
deformations. Zeitschrift fur Angewandte Mathematik und Physik 73(4),173 2022.
[16] Barroso A.C., Matias J., Morandotti M., Owen D.R., Zappale E. The Variational Modeling of
Hierarchical Structured Deformations, Journal of Elasticity, 2022, DOI 10.1007/s10659-022-09961-
w.
3
[17] Barroso A.C., Matias J., Zappale E. Relaxation for an optimal design problem in BD(Ω). Proceedings
of the Royal Society of Edinburgh Section A: Mathematics, 153(3), 2023, 721–763.
[18] Kroemer S., Kruz´ık M., Zappale E., Relaxation of functionals with linear growth: Interactions
of emerging measures and free discontinuities, Adv. Calc. Var., 16(4), 2023, 835–865
https://doi.org/10.1515/acv-2021-0063.
[19] Barroso A. C., Zappale E. An optimal design problem with non-standard growth and no concentration
effects Asymptotic Analysis. 2021 1 – 28, DOI: 10.3233/ASY-211711
[20] Matias J., Morandotti M., Owen D. R., Zappale, E. Upscaling and spatial localization of non-local
energies with applications to crystal plasticity, Math. Mech. Solids, 26, 2021, n. 7, 963–997.
[21] Fotso Tachago J. F., Gargiulo G., Nnang H., Zappale, E. Multiscale homogenization of integral
convex fucntionals in Orlicz Sobolev setting, Evolution Equations and Control Theory, 2021, 10,
n. 2, pages=297-320, doi=10.3934/eect.2020067.
[22] Kreisbeck C., Zappale E. Loss of double-integral character during relaxation, SIAM J. Math.
Anal., 53, 2021, n. 1, 351–385
[23] Fotso Tachago J., Nnang H., Zappale E. Reiterated periodic homogenization of integral functionals
with convex and nonstandard growth integrands, Opuscula Mathematica, 41, n. 1, 2021, 113-143,
doi=10.7494/OPMATH.2021.41.1.113.
[24] Kreisbeck C., Zappale E. Lower semicontinuity and relaxation of nonlocal L∞-functionals, Calc.
Var. Partial Differential Equations, 59, 2020, n. 4, Paper No. 138, 36.
[25] Prinari F., Zappale E. A relaxation result in the vectorial setting and Lp-approximation for
L∞-functionals, J. Optim. Theory Appl. 186, 2020, no. 2, 412–452.
[26] Ferreira R., Zappale E. Bending-torsion moments in thin multi-structures in the context of
nonlinear elasticity, Communications on Pure and Applied Analysis, 19, n. 3, 2020, 1747–1793,
doi=10.3934/cpaa.2020072.
[27] Barroso A.C., Zappale E. Relaxation for Optimal Design Problems with Non-standard Growth,
Applied Mathematics and Optimization, 80, n. 2, 2019, 515–546, doi=10.1007/s00245-017-9473-6,
issn=00954616.
Conference Proceedings
[28] Fotso Tachago J., Nnang H., Zappale E. Relaxation of periodic and nonstandard growth integrals
by means of two-scale convergence, Integral methods in science and engineering, 123–131,
Birkh¨auser/Springer, Cham. 2019.
[29] Fotso Tachago J., Gargiulo G., Nnang H., Zappale, E. Some Convergence Results on the
Periodic Unfolding Operator in Orlicz Setting. In: Constanda, C., Bodmann, B.E., Harris,
P.J. (eds) Integral Methods in Science and Engineering. IMSE 2022. Birkh¨auser, Cham. 2023
https://doi.org/10.1007/978-3-031-34099-4 29
[30] Barroso A.C., Matias J., Zappale E. Some Optimal Design Problems with Perimeter Penalisation.
In: Beir˜ao da Veiga, H., Minh´os, F., Van Goethem, N., Sanchez Rodrigues, L. (eds) Nonlinear
Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical Sciences,
vol 7. Springer, Cham. 2024, https://doi.org/10.1007/978-3-031-53740-0 1
[31] Gargiulo G., Samoilenko V., Zappale E. Power Law Approximation Results for Optimal Design
Problems. In: Beir˜ao da Veiga, H., Minh´os, F., Van Goethem, N., Sanchez Rodrigues, L. (eds)
Nonlinear Differential Equations and Applications. PICNDEA 2022. CIM Series in Mathematical
Sciences, vol 7. Springer, Cham. 2024, https://doi.org/10.1007/978-3-031-53740-0 6
Submitted papers
G. Bertazzoni, A. Torricelli. E. Zappale, Homogenization of non-local integral functionals via
two-scale Young measures, submitted.
Fotso Tachago J., Gargiulo G., Nnang H., Zappale E. Homogenization of non-convex integral
energies with Orlicz growth via periodic unfolding
A. C. Barroso, E. Zappale ntegral representation for a relaxed optimal design problem for nonsimple
grade two materials, submitted.
4
Samolienko V, Samolienko Y, Zappale E., Nonlinear WKB method, asymptotic soliton-like
solutions of variable coefficients Korteweg–de Vries equations with singular perturbation and
Rankine–Hugoniot-type conditions.
5