CARLO MANCINI TERRACCIANO
Structure:
Dipartimento di FISICA
SSD:
PHYS-06/A

Notizie

La didattica a distanza sarà svolta tramite videoconferenze con Google Meet, i link alle lezioni saranno pubblicati sulla pagina Moodle del corso.

Sulla pagina Moodle saranno disponibili anche le presentazioni e diversi link per approfondire gli argomenti delle lezioni.

 

Per domande, curiosità e suggerimenti sono disponibile via email (carlo.mancini-terracciano@uniroma1.it). Possiamo organizzare dei ricevimenti virtuali sempre tramite Google Meet.

 

Le lezioni vengono registrate e sono disponibili su Google Drive, mandatemi una richiesta per la condivisione delle stesse.

Orari di ricevimento

Sempre disponibile anche se è consiglio di prendere appuntamento per email.

Curriculum

Education:
Ph.D. in Physics at the University “Roma Tre” received on 27th January 2015.
Thesis title: “Analysis and interpretation of Carbon ion fragmentation in the Bragg peak energy range”.
Supervisors: Prof. Filippo Ceradini (Roma Tre), Dr. Alfredo Ferrari (CERN).
Ph.D. student at Bern University (Jan. 2011-Jan. 2012) and at “Roma Tre” (Jan. 2012- Jan. 2015).
Master degree (Laurea Specialistica) in Particle Physics received on 20th December 2010.
(DM 509/99 - Ordin. 2007 classe 20/S) at the University of Roma “Sapienza”.
Final mark: 110/110 cum laude.
Thesis title: “Study of the correlated noise in an array of bolometric detectors” [49]. Supervisors: Prof. Fernando Ferroni, Dr. Marco Vignati.
Internship at SLAC Linear Accelerator Centre, Menlo Park (California) July - September 2008.
Study of the exotic charmonioum state Y(4260) decay in ψ(2s)π+π− within the BaBar col- laboration.
Mentor: Dr. Gianluigi Cibinetto.

Fields of Research Interest:
Applications of Physics, Nuclear Physics in particular, to Medicine

Research Experience:
Mar. 2020 - to date. Researcher (RTDA) at the University of Roma “Sapienza”. Applications of Nuclear Physics to Medicine.
Postdoc at the University of Roma “Sapienza”.
Mar. 2019 - Feb. 2020. Emulating BLOB a low energy nuclear interaction model with Deep Learning algorithms within the “GeNIALE extension”. Postdoc at INFN, Section of Roma.
Mar. 2017 - Feb. 2019. Development of nuclear interaction models below 100 MeV/n for Geant4, a Monte Carlo toolkit for nuclear physics simulation, within the project “GeNIALE” (Geant Nuclear Inter- action At Low Energy).
Feb. 2015 - Feb. 2017. Postdoc at the University of Roma “Sapienza”. Development of a probe to help surgeons to perform a complete tumour resection using beta minus radio-tracers.
Apr. - May 2015. Cooperation Associate (COAS) at CERN, Geneve (Switzerland). Implementation of Carbon ion quasi-elastic break-up cross section at a few tens of MeV/n in FLUKA, a particle and nuclear physics Monte Carlo simulation program.
Jul. 2012 - Jan. 2015. Fellow at CERN within the Marie Sk􏰅llodowska-Curie ITN “ENTERVISION” (MSCA Grant Agreement: 264552). Development and benchmark of FLUKA. Development of models for the interaction of 12C ions at the energy relevant for hadrontherapy.

List of publications:
[1] L. Alunni Solestizi et al. ≪Feasibility study on the use of CMOS sensors as detectors in radioguided surgery with β−emitters≫. In: Applied Radiation and Isotopes 165 (2020), p. 109347. doi: 10.1016/j.apradiso.2020.109347.
[2] P. Arce et al. ≪Report on G4-Med, a Geant4 benchmarking system for medical physics applications developed by the Geant4 Medical Simulation Benchmarking Group≫. In: Medical Physics (2020). doi: 10.1002/mp.14226.
[3] * A. Ciardiello et al. ≪Preliminary results in using Deep Learning to emulate BLOB, a nuclear interaction model≫. In: Physica Medica 73 (2020). doi: 10.1016/j.ejmp.2020.04.005.
[4] * F. Collamati et al. ≪Radioguided surgery with β− radiation in pancreatic Neuroendocrine Tumors: a feasibility study.≫ In: Scientific Reports 10 (1 2020). doi: 10.1038/s41598-020-61075-2.
[5] F. Collamati et al. ≪A DROP-IN beta probe for robot-assisted 68Ga-PSMA radioguided surgery: first ex vivo technology evaluation using prostate cancer specimens≫. In: EJNMMI Res 10 (2020), p. 92. doi: 10.1186/s13550-020-00682-6.
[6] F. Collamati et al. ≪Stability and efficiency of a CMOS sensor as detector of low energy β and γ particles≫. In: Journal of Instrumentation 15.11 (2020), P11003–P11003. doi: 10.1088/1748-0221/15/11/p11003.
[7] M. Fischetti et al. ≪Inter-fractional monitoring of 12C ions treatments: results from a clinical trial at the CNAO facility.≫ In: Scientific Reports 10 (2020). doi: 10.1038/s41598-020-77843-z.
[8] I. Mattei et al. ≪Charged particles and neutron trackers: Applications to particle therapy≫. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 954 (2020), p. 161229. doi: 10.1016/j.nima.2018.09.064.
[9] S. Morganti et al. ≪Tumor-non-tumor discrimination by a β− detector for Radio Guided Surgery on ex-vivo neuroendocrine tumors samples≫. In: Europena Journal of Medical Physics 72 (2020), pp. 96–102. doi: 10.1016/j.ejmp.2020.03.021.
[10] M. G. Betti et al. ≪Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case≫. In: Journal of Cosmology and Astroparticle Physics 07 (2019), pp. 047–047. doi: 10.1088/1475-7516/2019/07/047.
[11] F. Collamati et al. ≪Characterisation of a β detector on positron emitters for medical applications≫. In: Physica Medica 67 (2019), pp. 85 –90. doi: 10.1016/j.ejmp.2019.10.025.
[12] R. Ferrari, C. Mancini-Terracciano, et al. ≪MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer≫. In: European Journal of Radiology (2019). doi: 10.1016/j.ejrad.2019.06.013.
[13] M. G. Betti et al. (PTOLEMY coll.) ≪A design for an electromagnetic filter for precision energy measurements at the tritium endpoint≫. In: Progress in Particle and Nuclear Physics (2019). doi: 10.1016/j.ppnp.2019.02.004.
[14] * C. Mancini-Terracciano et al. ≪Preliminary results coupling “Stochastic Mean Field” and “Boltzmann-Langevin One Body” models with Geant4≫. In: Physica Medica 67 (2019), pp. 116 –122. doi: 10.1016/j.ejmp.2019.10.026.
[15] A. Rucinski et al. ≪Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 16O ion beams in a PMMA target at large angles≫. In: Physica Medica 64 (2019), pp. 45 –53. doi: 10.1016/j.ejmp.2019.06.001.
[16] A. Russomando et al. ≪The β− radio-guided surgery: method to estimate the minimum injectable activity from ex-vivo
test.≫ In: Physica Medica 58 (2019), pp. 114–120. doi: 10.1016/j.ejmp.2019.02.004.
[17] G. Traini et al. ≪Review and performance of the Dose Profiler, a particle therapy treatments online monitor≫. In: Physica Medica 65 (2019), pp. 84 –93. doi: 10.1016/j.ejmp.2019.07.010.
[18] * F. Collamati et al. ≪Radioguided surgery with β radiation: a novel application with Ga68≫. In: Scientific Reports 8.1 (Oct. 2018), pp. 1–9. doi: 10.1038/s41598-018-34626-x.
[19] E. Baracchini et al. (PTOLEMY coll.) ≪PTOLEMY: A Proposal for Thermal Relic Detection of Massive Neutrinos and Directional Detection of MeV Dark Matter≫. In: arXiv (2018). eprint: 1808.01892 (physics.ins-det).
[20] * C. Mancini-Terracciano et al. ≪Radio-guided surgery with β− radiation: tests on ex-vivo specimens≫. In: IFMBE Pro- ceedings Series 68/3 (Mar. 2018), pp. 693–697. doi: 10.1007/978-981-10-9023-3_126.
[21] * C. Mancini-Terracciano et al. ≪Validation of Geant4 nuclear reaction models for hadron therapy and preliminary results with BLOB≫. In: IFMBE Proceedings Series 68/1 (Mar. 2018), pp. 675–685. doi: 10.1007/978-981-10-9035-6_126.
[22] C. Martelli et al. ≪Mass spectrometry characterization of DOTA-Nimotuzumab conjugate as precursor of an innovative β− tracer suitable in radio-guided surgery≫. In: Journal of Pharmaceutical and Biomedical Analysis (2018). doi: 10.1016/j. jpba.2018.03.018.
[23] I. Mattei et al. ≪Scintillating fiber devices for Particle Therapy applications≫. In: IEEE Transactions on Nuclear Science (June 2018), pp. 1–1. doi: 10.1109/TNS.2018.2843179.
[24] * S. Morganti et al. ≪Position sensitive β- detector based on p-terphenyl scintillator for medical applications≫. In: Journal of Instrumentation 13.07 (July 2018), P07001. doi: 10.1088/1748-0221/13/07/P07001.
[25] P. Napolitani, M. Colonna, and C. Mancini-Terracciano. ≪Cluster formation in nuclear reactions from mean-field inhomo- geneities≫. In: Journal of Physics: Conference Series 1014.1 (Mar. 2018), p. 012008. doi: 10.1088/1742-6596/1014/1/ 012008.
[26] M. De Simoni et al. ≪In-room test results at CNAO of an innovative PT treatments online monitor (Dose Profiler)≫. In: Il Nuovo Cimento C (6 2018). doi: 10.1393/ncc/i2018-18209-2.
[27] L. Alunni Solestizi et al. ≪Use of a CMOS image sensor for beta-emitting radionuclide measurements≫. In: Journal of Instrumentation 13.07 (July 2018), P07003. doi: 10.1088/1748-0221/13/07/P07003.
[28] D. Carlotti et al. ≪Use of bremsstrahlung radiation to identify hidden weak β− sources: feasibility and possible use in radio-guided surgery≫. In: Journal of Instrumentation 12.11 (Nov. 2017), pp. 11006–11019. doi: 10.1088/1748-0221/12/ 11/P11006.
[29] * C. Mancini-Terracciano et al. ≪Validation of Geant4 nuclear reaction models for hadrontherapy and preliminary results with SMF and BLOB≫. In: Physica Medica 42, Supplement 1 (2017), p. 12. doi: 10.1016/j.ejmp.2017.09.030.
[30] C. Mancini-Terracciano et al. ≪Feasibility of beta-particle radioguided surgery for a variety of ”nuclear medicine” radionu- clides≫. In: Physica Medica 43 (Nov. 2017), pp. 127–133. doi: 10.1016/j.ejmp.2017.10.012.
[31] M. Marafini et al. ≪Secondary radiation measurements for particle therapy applications: nuclear fragmentation produced by 4He ion beams in a PMMA target≫. In: Physics in Medicine and Biology 62.4 (Jan. 2017), pp. 1291–1309. doi: 10.1088/1361-6560/aa5307.
[32] I. Mattei et al. ≪Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target≫. In: Physics in Medicine and Biology 62 (Jan. 2017), pp. 1438–1455. doi: 10.1088/1361-6560/62/4/1438.
[33] A. Rucinski et al. ≪Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 4He and 12C ion beams in a PMMA target at large angle≫. In: Physics in Medicine and Biology (Dec. 2017), pp. 1–13. doi: 10.1088/1361-6560/aaa36a.
[34] E. Solfaroli Camillocci et al. ≪Intraoperative probe detecting β− decays in brain tumour radio-guided surgery.≫ In: Nuclear Instruments and Methods in Physics Research Section A 845 (Feb. 2017), pp. 689–692. doi: 10.1016/j.nima.2016.04.107.
[35] G. Traini et al. ≪Design of a new tracking device for on-line beam range monitor in carbon therapy≫. In: Physica Medica 34 (Feb. 2017), pp. 18–27. doi: 10.1016/j.ejmp.2017.01.004.
[36] I. Venditti et al. ≪Y3+ embedded in polymeric nanoparticles: Morphology, dimension and stability of composite colloidal system≫. In: Colloids and Surfaces A: Physicochemical and Engineering Aspects 532.Supplement C (2017), pp. 125–131. doi: 10.1016/j.colsurfa.2017.05.082.
[37] V. Bocci et al. ≪Development of a radioguided surgery technique with β− decays in brain tumor resection.≫ In: Radiotherapy and Oncology 118 (2016). doi: 10.1016/S0167-8140(16)30081-0.
[38] R. Donnarumma et al. ≪A novel radioguided surgery technique exploiting β− decay.≫ In: Physica Medica 32 (Feb. 2016), pp. 104–105. doi: 10.1016/j.ejmp.2016.01.362.
[39] A. Rucinski et al. ≪Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Ther- apeutic He, C and O Ion Beams Impinging On a PMMA Target≫. In: Medical Physics 43.6Part12 (2016), pp. 3454–3455. doi: 10.1118/1.4956110.
[40] A. Russomando et al. ≪An Intraoperative β− Detecting Probe for Radio-Guided Surgery in Tumour Resection.≫ In: IEEE Transactions on Nuclear Science 63.5 (Oct. 2016), pp. 2533–2539. doi: 10.1109/TNS.2016.2600266.
[41] E. Solfaroli Camillocci et al. ≪First Ex-Vivo Validation of a Radioguided Surgery Technique with β− Radiation.≫ In: Physica Medica 32.9 (Sept. 2016), pp. 1139–1144. doi: 10.1016/j.ejmp.2016.08.018.
[42] N. Agafonova et al. ≪Addendum: search for νμ → νe oscillations with the OPERA experiment in the CNGS beam.≫ In: Journal of High Energy Physics 85 (Jan. 2014). doi: 10.1007/JHEP07(2013)085.
[43] F. Bellini et al. ≪Extended calibration range for prompt photon emission in ion beam irradiation≫. In: Nuclear Instruments and Methods in Physics Research Section A 745 (Mar. 2014), pp. 114–118. doi: 10.1016/j.nima.2014.01.047.
[44] * C. Mancini-Terracciano et al. ≪Development of a technique to speed up the simulation of PET and SPECT.≫ In: Radiotherapy and Oncology 110 (Feb. 2014), S62. doi: 10.1016/S0167-8140(15)34148-7.
[45] P. Sala et al. ≪The recent developments of the FLUKA Monte Carlo code oriented to its applications in hadrontherapy.≫ In: Radiotherapy and Oncology 110 (Feb. 2014). doi: 10.1016/S0167-8140(15)34195-5.
[46] T. Adam et al. ≪Measurement of the neutrino velocity with the OPERA detector in the CNGS beam using the 2012 dedicated
data.≫ In: Journal of High Energy Physics 2013.1 (Jan. 2013), pp. 1–14. doi: 10.1007/JHEP01(2013)153.
[47] N. Agafonova et al. ≪Search for νμ → νe oscillations with the OPERA experiment in the CNGS beam.≫ In: Journal of High Energy Physics 7 (July 2013), pp. 1–16. doi: 10.1007/JHEP07(2013)004.
[48] P. G. Ortega et al. ≪A dedicated tool for PET scanner simulations using FLUKA≫. In: 2013 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA) (2013). doi: 10. 1109/ANIMMA.2013.6728011.
[49] C. Mancini-Terracciano and M. Vignati. ≪Noise correlation and decorrelation in arrays of bolometric detectors.≫ In: Journal of Instrumentation 7.06 (June 2012), P06013. doi: 10.1088/1748-0221/7/06/P06013.
[50] L. Cavallini et al. ≪Assessment of the Cerenkov light produced in a PbWO4 crystal by means of the study of the time
structure of the signal.≫ In: Astroparticle, Particle and Space Physics, Detectors and Medical Physics Applications 63 (Sept. 2008), pp. 359–363. doi: 10.1142/9789812819093_0063.

* corresponding author