MECHATRONICS AND VIBRATIONS
Obiettivi formativi
Il corso ha come obiettivo lo studio dei sistemi EMS (Electro-mechanical Systems) ed il loro controllo, con particolare riferimento ai sistemi di corpi rigidi e ai continui elastici (barre, travi e piastre). Si studiano in particolare applicazioni al controllo di sistemi vibranti, alle smart structures e ai sistemi meccatronici in generale.
Canale 1
ANTONIO CARCATERRA
Scheda docente
Programmi - Frequenza - Esami
Programma
In the course program, the dynamics of EMS-Electromechanical Systems and their control are analyzed in details, including systems of rigid bodies and of continuous elastic structures (rod, beam and plates). Applications to vibration analysis and their control, smart structures and mechatronic systems, are examples approached in the course. In details:
1. Introduction to Mechatronics
Architecture of a mechatronic system
Defining the KPIs
Process, sensors, motors / actuators, controllers
Models and sensors measurements
Control of mechatronic systems
2. Multiphisics and Hamilton Principle
Variational calculus
Minimum principles in Mechanics and Electromagnetism
Theory of EMS- ElectroMechanical System
Hamilton action, the Euler-Lagrange equations
Lagrange equations for electromechanical systems
Linear and nonlinear dynamical systems
3. Linear Dynamics: discrete and continuous systems
Systems of rigid bodies
Systems of continuous elastic structures
Constraints and the method of Lagrange's multiplers
Linearization
Time and Frequency domains: concvolution integral and transfer function
Elements of spectral theory of linear operators
Modal Analysis
Systems with Ndof: Eigenvectors and Eigenfrequencies and their properties
Continuous elastic systems: Eigenfunctions and Eigenfrequencies and their properties
Forced deterministic problems (harmonic, periodic, shock)
Forced random problems (random noise and power spectral density)
Vibrations of elastic and electro-elastic systems
Vibration active, semi-active and passive control
*Applications of Matlab and Simulink for the analysis of oscillating EMS and mechatronics systems
4. Mechatronic Optimal Control
Objective functions
Minimum/minimum of objective functionals
Pontryagin equations
Model predictive control - MPC
Quadratic objective functions and linear dynamics -LQR
General solution by the RIccati's equation
Special solution by Modal Analysis, eigenvector and eigenfrequencies
Models and sensors measurements
Kalman filter
*Applications of Matlab and Smulink to controlled Mechatronics systems
5. Elements of Signal Analysis for Mechatronics and case-studies
Data processing for intelligent control
Extraction of information from data sensors
Sensors and signals
Free response of 1 DOF linear
Forced response of 1 DOF linear
Fourier transform (FT)
Case study 1: Modeling the vibrations of a mechanical resonators subject to different inputs
Case study 2. Modelling and analysis of an open-loop permanent magnet motor coupled with permanent magnet generator in transient and steady-state conditions
Short Time Fourier Transform (STFT)
Power Spectral Density (PSD)
Hilbert Transform, istantaneous frequency and phase (HT and IF)
Empirical mode decomposition (EMD)
Case study 3: The intelligent tyre
Case study 4: Real-time train railways monitoring
Case study 5: Structural damage detection
*Applications of Matlab and Simulink for the analysis of the case-studies
6. Design of Mechatronic Systems
Architecture of a mechatronic system
Defining KPIs
Process, sensors, motors / actuators, controllers
Preliminary design architecture
Designing of the subcomponents (plant, sensors, controller, motors / actuators)
Design of controllers with optimal control methods
Design verification using Simulink
Design examples: electronically controlled intelligent suspension system for motor vehicles, attitude stabilization systems of a drone. Experience in the laboratory of Mechatronics and Vehicles System Dynamics
Prerequisiti
Ottima conoscenza della dinamica, della meccanica razionale ed analitica
Ottima conoscenza della meccanica dei solidi
Ottima conoscenza dell'analisi matematica
Testi di riferimento
Micromechatronics: Modeling, Analysis, and Design with MATLAB, Second Edition, Victor Giurgiutiu, Sergey Edward Lyshevski, 2009 by CRC Press.
Chapter IV "Elements of Control", of the book "Vehicle System Dynamics and Mechatronics", A. Carcaterra, 2018
Fundamentals of Vibration, L.Meirovitch, McGraw-Hill, 2001
Appunti di Meccanica delle Vibrazioni, A. Carcaterra, 2004
Appunti di Meccanica delle Vibrazioni, A. Sestieri, 1995
Notes on Signal Analysis, N. Roveri, 2016
Modalità insegnamento
Il corso è basato sulle lezioni in aula in cui sono presentati tutti gli argomenti teorici. Il corso è corredato di lezioni per lo sviluppo di esercizi basati anche sull'uso del computer
Frequenza
The course is based on classroom lectures in which all the theoretical topics are presented. The course is equipped with lessons for the development of exercises based also on the use of computers
Modalità di esame
La modalità di valutazione è basata sull'esecuzione di una prova scritta ed una orale in cui si chiede di esaminare il modello di un sistema meccatronico, saperne costruire uno schema a blocchi, saperne effettuare la simulazione al computer.
Modalità di erogazione
Il corso è basato sulle lezioni in aula in cui sono presentati tutti gli argomenti teorici. Il corso è corredato di lezioni per lo sviluppo di esercizi basati anche sull'uso del computer
ANTONIO CARCATERRA
Scheda docente
Programmi - Frequenza - Esami
Programma
In the course program, the dynamics of EMS-Electromechanical Systems and their control are analyzed in details, including systems of rigid bodies and of continuous elastic structures (rod, beam and plates). Applications to vibration analysis and their control, smart structures and mechatronic systems, are examples approached in the course. In details:
1. Introduction to Mechatronics
Architecture of a mechatronic system
Defining the KPIs
Process, sensors, motors / actuators, controllers
Models and sensors measurements
Control of mechatronic systems
2. Multiphisics and Hamilton Principle
Variational calculus
Minimum principles in Mechanics and Electromagnetism
Theory of EMS- ElectroMechanical System
Hamilton action, the Euler-Lagrange equations
Lagrange equations for electromechanical systems
Linear and nonlinear dynamical systems
3. Linear Dynamics: discrete and continuous systems
Systems of rigid bodies
Systems of continuous elastic structures
Constraints and the method of Lagrange's multiplers
Linearization
Time and Frequency domains: concvolution integral and transfer function
Elements of spectral theory of linear operators
Modal Analysis
Systems with Ndof: Eigenvectors and Eigenfrequencies and their properties
Continuous elastic systems: Eigenfunctions and Eigenfrequencies and their properties
Forced deterministic problems (harmonic, periodic, shock)
Forced random problems (random noise and power spectral density)
Vibrations of elastic and electro-elastic systems
Vibration active, semi-active and passive control
*Applications of Matlab and Simulink for the analysis of oscillating EMS and mechatronics systems
4. Mechatronic Optimal Control
Objective functions
Minimum/minimum of objective functionals
Pontryagin equations
Model predictive control - MPC
Quadratic objective functions and linear dynamics -LQR
General solution by the RIccati's equation
Special solution by Modal Analysis, eigenvector and eigenfrequencies
Models and sensors measurements
Kalman filter
*Applications of Matlab and Smulink to controlled Mechatronics systems
5. Elements of Signal Analysis for Mechatronics and case-studies
Data processing for intelligent control
Extraction of information from data sensors
Sensors and signals
Free response of 1 DOF linear
Forced response of 1 DOF linear
Fourier transform (FT)
Case study 1: Modeling the vibrations of a mechanical resonators subject to different inputs
Case study 2. Modelling and analysis of an open-loop permanent magnet motor coupled with permanent magnet generator in transient and steady-state conditions
Short Time Fourier Transform (STFT)
Power Spectral Density (PSD)
Hilbert Transform, istantaneous frequency and phase (HT and IF)
Empirical mode decomposition (EMD)
Case study 3: The intelligent tyre
Case study 4: Real-time train railways monitoring
Case study 5: Structural damage detection
*Applications of Matlab and Simulink for the analysis of the case-studies
6. Design of Mechatronic Systems
Architecture of a mechatronic system
Defining KPIs
Process, sensors, motors / actuators, controllers
Preliminary design architecture
Designing of the subcomponents (plant, sensors, controller, motors / actuators)
Design of controllers with optimal control methods
Design verification using Simulink
Design examples: electronically controlled intelligent suspension system for motor vehicles, attitude stabilization systems of a drone. Experience in the laboratory of Mechatronics and Vehicles System Dynamics
Prerequisiti
Ottima conoscenza della dinamica, della meccanica razionale ed analitica
Ottima conoscenza della meccanica dei solidi
Ottima conoscenza dell'analisi matematica
Testi di riferimento
Micromechatronics: Modeling, Analysis, and Design with MATLAB, Second Edition, Victor Giurgiutiu, Sergey Edward Lyshevski, 2009 by CRC Press.
Chapter IV "Elements of Control", of the book "Vehicle System Dynamics and Mechatronics", A. Carcaterra, 2018
Fundamentals of Vibration, L.Meirovitch, McGraw-Hill, 2001
Appunti di Meccanica delle Vibrazioni, A. Carcaterra, 2004
Appunti di Meccanica delle Vibrazioni, A. Sestieri, 1995
Notes on Signal Analysis, N. Roveri, 2016
Modalità insegnamento
Il corso è basato sulle lezioni in aula in cui sono presentati tutti gli argomenti teorici. Il corso è corredato di lezioni per lo sviluppo di esercizi basati anche sull'uso del computer
Frequenza
The course is based on classroom lectures in which all the theoretical topics are presented. The course is equipped with lessons for the development of exercises based also on the use of computers
Modalità di esame
La modalità di valutazione è basata sull'esecuzione di una prova scritta ed una orale in cui si chiede di esaminare il modello di un sistema meccatronico, saperne costruire uno schema a blocchi, saperne effettuare la simulazione al computer.
Modalità di erogazione
Il corso è basato sulle lezioni in aula in cui sono presentati tutti gli argomenti teorici. Il corso è corredato di lezioni per lo sviluppo di esercizi basati anche sull'uso del computer
- Codice insegnamento10592758
- Anno accademico2024/2025
- CorsoIngegneria meccanica - Mechanical Engineering
- CurriculumAutomazione New York University (percorso valido anche ai fini del conseguimento del doppio titolo italo-statunitense)
- Anno1º anno
- Semestre2º semestre
- SSDING-IND/13
- CFU9
- Ambito disciplinareIngegneria meccanica