Programma
Il corso è organizzato in due moduli da 3 crediti, scelti tra i 4 moduli del corso di Elective in Robotics. Ciascun modulo ha il suo programma specifico disponibile all'inizio del ciclo di lezioni.
Una descrizione dettagliata e sempre aggiornata dei programmi è disponibile alla pagina: http://www.diag.uniroma1.it/vendittelli/EIR/
Riportiamo qui una sintesi dei 4 moduli di Elective in Robotics tra i quali scegliere:
Modulo 1: Modeling and control of multi-rotor UAVs (Marilena Vendittelli)
- Introduction to the course and aerial vehicles modeling
- Quadrotor modeling
- Control based on linear approximation
- Backstepping-based control
- Control based on dynamic feedback linearization
- Geometric control on SE(3)
- State estimation
- Motion planning
- Navigation among obstacles based on control barrier functions
Modulo 2: Underactuated Robots (Leonardo Lanari, Nicola Scianca)
1. Introduction
Motivation. Definition of underactuated system (generalized coordinates vs degrees of freedom). Examples of underactuated robots.
2. Modeling and Properties
Eulero-Lagrange modeling (classic and alternate). State-space form. Control problems of interest. Controllabiity (STLA, STLC, natural controllability). Comparison with fully actuated robots. Integrability conditions for passive dynamics. Equilibrium points and linear controllability.
3. Case Studies: Acrobot and Pendubot
Modeling. Approximate linearization at equilibria. Linear controllability. Balancing. Partial feedback linearization. Swing-up (1) via analysis of the zero dynamics (2) via energy pumping.
4. Zero dynamics in underactuated systems
Normal form and zero dynamics. Importance of the zero dynamics in control. Zero-dynamics in linear and nonlinear underactuated systems. The homoclinic orbit.
5. Passivity
Definition and physical interpretation. Linear and nonlinear mechanical systems examples. Dissipativity in state space representations. Feedback equivalence to a passive system. Output stabilization of passive systems
6. Energy-based control of underactuated systems
The convey-crane and reaction-wheel cases.
7. Optimization methods for Planning and Control
Introduction to Dynamic Programming. Hamilton-Jacobi-Bellman equation. Derivation of the Linear Quadratic Regulator
Linear-Time-Varying LQR. Trajectory optimization with Iterative LQR. Constrained optimization. Model Predictive Control (Linear, LTV and Nonlinear). LQR-trees.
Modulo 3: Physical Human-Robot Interaction (Antonio Franchi)
Physical and cognitive Human-Robot Interaction (pHRI and cHRI). Robot safety and dependability (mechanics, sensing, planning, and control). Lightweight and compliant robotic manipulators. Robots with Variable Stiffness Actuation (VSA). Soft robotics. An architecture for pHRI: safety, coexistence, and collaborative layers. Safety standards in robotics. The collision event pipeline. Sensorless detection and isolation of collisions and contacts. Collision detection in industrial robots with a closed control architeture. Safe reaction strategies to collisions. Use of redundancy. Human-robot coexistence. Monitoring distances in the workspace. Collision avoidance in dynamic/anthropic domains. Industrial case study. Human-robot collaboration: contactless/visual coordination or with physical interaction. Contact localization and contact force estimation. Control schemes for collaborative human-robot tasks: admittance control, force regulation, impedance control, hybrid force/motion control. Case studies in two industrial prototype cells.
Modulo 4: Control of Multi-Robot Systems (Andrea Cristofaro)
- Examples of applications of multi-robot systems.
- Centralized vs. decentralized architectures.
- Elements of graph theory.
- Connectivity and Consensus; Passivity and Lyapunov stability; Interconnection of mechanical systems.
- Application to multi-UAV systems: Formation control with time-varying topology; Formation control with connectivity maintenance; Steady-state behaviors;
- Overview of other multi robot problems.
Prerequisiti
Una preparazione generale in robotica (cinematica, dinamica, pianificazione, controllo) è auspicabile ma non obbligatoria.
Testi di riferimento
Materiale didattico fornito dai docenti.
Modalità insegnamento
Lezioni frontali che illustrano le metodologie utilizzate negli ambiti considerati nei diversi moduli del corso. Analisi di casi di studio, esempi di applicazione a sistemi reali. Esercitazioni in laboratorio, se consentito dalle misure imposte dall'emergenza sanitaria in corso.
Frequenza
In generale, non obbligatoria ma i docenti di ciascun modulo potrebbero richiedere l'obbligo di frequenza.
Modalità di esame
Presentazioni o progetti per ogni modulo.
Modalità di erogazione
Lezioni frontali che illustrano le metodologie utilizzate negli ambiti considerati nei diversi moduli del corso. Analisi di casi di studio, esempi di applicazione a sistemi reali. Esercitazioni in laboratorio, se consentito dalle misure imposte dall'emergenza sanitaria in corso.