NEURAL NETWORKS
Obiettivi formativi
Obiettivi generali: Il corso è una overview generale sulle reti neurali, sia dal punto di vista metodologico che pratico. Gli studenti acquisiranno una forte competenza teorica e pratica su come le reti neurali funzionano e sono implementate, con particolare attenzione sui componenti più usati, e sulle attuali limitazioni. Obiettivi specifici: Dal punto di vista teorico, rivedremo il paradigma generale per la costruzione di modelli differenziabili che possono essere ottimizzati end-to-end con la discesa al gradiente. Successivamente, esamineremo i componenti essenziali per progettare architetture in grado di lavorare su immagini (convoluzioni), sequenze (recurrent layer) ed insiemi (transformers). L'ultima parte del corso si concentrerà su una selezione di importanti argomenti di ricerca, tra cui le reti neurali su grafi, l'apprendimento continuo e i modelli generativi. Conoscenza e comprensione: Alla fine del corso, lo studente avrà una ottima conoscenza di come le reti neurali funzionano in pratica, con la capacità di implementare nuovi componenti da zero, riutilizzare modelli esistenti o progettare nuove architetture per problemi al di là della panoramica del corso. Abilità critiche e di giudizio: Ci si aspetta che lo studente sia in grado di analizzare un nuovo problema che richiede l'apprendimento automatico e progettare la soluzione appropriata basata su una rete neurale, comprendendone sia i punti di forza che i limiti. Abilità comunicative: Il corso favorirà le abilità comunicative in termini di capacità di descrivere (in modo tecnico e non tecnico) la matematica alla base dei modelli, nonché di scrivere codice chiaro e comprensibile per la loro implementazione. Abilità di apprendimento: Al di là degli argomenti del corso, lo studente sarà in grado di studiare autonomamente nuovi argomenti di ricerca e di navigare la letteratura scientifica, oltre a saper comprendere punti di forza e debolezze delle attuali librerie software.
Programmi - Frequenza - Esami
Programma
Prerequisiti
Testi di riferimento
Frequenza
Modalità di esame
Modalità di erogazione
Programmi - Frequenza - Esami
Programma
Prerequisiti
Testi di riferimento
Frequenza
Modalità di esame
Modalità di erogazione
Programmi - Frequenza - Esami
Programma
Prerequisiti
Testi di riferimento
Modalità insegnamento
Frequenza
Modalità di esame
Bibliografia
Modalità di erogazione
Programmi - Frequenza - Esami
Programma
Prerequisiti
Testi di riferimento
Modalità insegnamento
Frequenza
Modalità di esame
Bibliografia
Modalità di erogazione
- Codice insegnamento1022870
- Anno accademico2024/2025
- CorsoEngineering in Computer Science - Ingegneria Informatica
- CurriculumCurriculum unico
- Anno1º anno
- Semestre2º semestre
- SSDING-IND/31
- CFU6
- Ambito disciplinareAttività formative affini o integrative