PHYSICS OF COMPLEX SYSTEMS

Obiettivi formativi

A - Conoscenza e capacità di comprensione OF 1) Possedere una conoscenza di base della scienza della complessità, ossia delle proprietà collettive che emergono con un gran numero di componenti in interazione tra loro (atomi, particelle o batteri in un contesto fisico o biologico, oppure persone, macchine o imprese in un contesto socio-economico). OF 2) Comprendere i meccanismi alla base dell’emergere di proprietà macroscopiche complesse a partire dalla conoscenza dei meccanismi microscopici. OF 3) Padroneggiare gli strumenti di base di uno scienziato della complessità: teoria dell’informazione, teoria delle reti, invarianza di scala e fenomeni critici, proprietà dei sistemi dinamici, modelli ad agenti. B – Capacità applicative OF 4) Saper concepire modelli semplici per fenomenologie complesse. OF 5) Saper affrontare, analiticamente o computazionalmente, problemi complessi, traducendo le domande di ricerca in concrete azioni di soluzione e verifica. OF 6) Essere in grado di applicare le tecniche e i metodi appresi anche al di fuori degli ambiti trattati nel corso. OF 7) Integrare le conoscenze acquisite al fine di formalizzare i problemi e ottenere risultati e predizioni di crescente accuratezza. C - Autonomia di giudizio OF 8) Essere in grado di analizzare i fenomeni, anche mediante l’acquisizione di dati, che rientrano nell’ambito della complessità e indentificarne gli elementi essenziali. OF 9) Essere in grado di sintetizzare le fenomenologie per riuscire a distillare domande pertinenti e rilevanti. OF 10) Sapere identificare nuove direzioni di ricerca interessanti. D – Abilità nella comunicazione OF 11) Saper comunicare in maniera semplice problematiche complesse focalizzando l’attenzione sugli elementi essenziali e svelando, per quanto possibile, le relazioni di causa-effetto. OF 12) Saper organizzare una presentazione coerente, profonda eppure comprensibile. OF 13) Saper esprimere i propri pensieri di modo da stimolare il lavoro di gruppo e le interazioni con i colleghi. E - Capacità di apprendere OF 14) Avere la capacità di consultare testi ed articoli di riferimento. OF 15) Avere la capacità di valutare la rilevanza dei risultati, la loro collocazione nel panorama scientifico di riferimento e la loro potenziale importanza per gli argomenti di ricerca di interesse. OF 16) Essere in grado di ideare e sviluppare un progetto di ricerca, identificando gli obiettivi principali e i possibili percorsi per raggiungerli.

Canale 1
VITTORIO LORETO Scheda docente

Programmi - Frequenza - Esami

Programma
Introduzione ai sistemi complessi: Struttura gerarchica della natura, riduzionismo e complessità. Complesso e complicato. Introduzione alla nozione di entropia e complessità in termodinamica e fisica statistica, teoria dei sistemi dinamici, teoria dell'informazione e teoria della complessità algoritmica. Principio della massima entropia e principio della massima verosimiglianza. Leggi di potenza: Distribuzioni, proprietà e rappresentazioni delle leggi di potenza. Legge di Zipf, legge di Heaps e sua relazione con la legge di Zipf. Legge di Taylor. Modelli generativi. Auto-organizzazione critica e crescita frattale: modelli fisici di crescita frattale auto-organizzata; modello Sandpile e Forest Fire; cenni alle teorie di campo medio e agli approcci del gruppo di rinormalizzazione. Grafi e reti complesse: Esempi di reti complesse in diversi settori; prospettiva storica; fondamenti della teoria dei grafi; modelli generativi;. Dinamica delle reti. Dinamica dell'innovazione: Motivazione e definizione; Il modello di Hoppe. Discussione sul principio del possibile adiacente. Modello dell'urna con innesco e sue applicazioni. Seminari su temi di ricerca specifici relativi ai sistemi complessi: Dinamica sociale (ad esempio, dinamica del consenso in linguistica, dinamica delle opinioni, evoluzione culturale); Dinamica dell'informazione (infosfera, sistemi di raccomandazione, disinformazione e camere ad eco, ecc.); Dinamica urbana (dal livello microscopico della mobilità al livello macroscopico della modellazione delle interazioni socio-economiche); Ecofisica e complessità economica; Reti neurali e intelligenza artificiale.
Prerequisiti
a) E’ indispensabile avere buone basi di fisica statistica, calcolo delle probabilità e di fisica dei sistemi dinamici. b) E’ importante avere buone conoscenze analitiche e computazionali. c) E’ utile avere nozioni di scienza dei dati e una forte propensione verso la modellizzazione teorica.
Testi di riferimento
I testi di riferimento ed il materiale didattico saranno indicati dai docenti durante il corso e riportati nella pagina web del corso.
Frequenza
La frequenza a tutte le lezioni è fortemente consigliata.
Modalità di esame
L’esame finale sarà composto da una prova orale stutturata in due fasi consecutive. (i) la presentazione di una tesina su un argomento avanzato scelto dallo studente e concordato con uno dei docenti di riferimento. (ii) una serie di domande aperte sugli argomenti fondanti del corso. Nella valutazione dell'esame la determinazione del voto finale tiene conto dei seguenti elementi: 1. Competenza sugli argomenti fondanti del corso: 60% 2. Preparazione ed esposizione della tesina: 40% Per superare l'esame occorre conseguire un voto non inferiore a 18/30. Per conseguire un punteggio pari a 30/30 e lode, lo studente deve invece dimostrare di aver acquisito una conoscenza eccellente di tutti gli argomenti trattati durante il corso, essendo in grado diraccordarli in modo logico e coerente, e di aver dimostrato iniziativa e capacità nell’elaborazione della tesina. Deve inoltre dimostrare autonomia di giudizio, iniziativa e capacità critica in generale.
Modalità di erogazione
Tutti i dettagli sono indicati nella pagina web del corso: https://sites.google.com/site/sistemicomplessisapienza/course-of-physics-of-complex-systems?authuser=0
VITTORIO LORETO Scheda docente

Programmi - Frequenza - Esami

Programma
Introduzione ai sistemi complessi: Struttura gerarchica della natura, riduzionismo e complessità. Complesso e complicato. Introduzione alla nozione di entropia e complessità in termodinamica e fisica statistica, teoria dei sistemi dinamici, teoria dell'informazione e teoria della complessità algoritmica. Principio della massima entropia e principio della massima verosimiglianza. Leggi di potenza: Distribuzioni, proprietà e rappresentazioni delle leggi di potenza. Legge di Zipf, legge di Heaps e sua relazione con la legge di Zipf. Legge di Taylor. Modelli generativi. Auto-organizzazione critica e crescita frattale: modelli fisici di crescita frattale auto-organizzata; modello Sandpile e Forest Fire; cenni alle teorie di campo medio e agli approcci del gruppo di rinormalizzazione. Grafi e reti complesse: Esempi di reti complesse in diversi settori; prospettiva storica; fondamenti della teoria dei grafi; modelli generativi;. Dinamica delle reti. Dinamica dell'innovazione: Motivazione e definizione; Il modello di Hoppe. Discussione sul principio del possibile adiacente. Modello dell'urna con innesco e sue applicazioni. Seminari su temi di ricerca specifici relativi ai sistemi complessi: Dinamica sociale (ad esempio, dinamica del consenso in linguistica, dinamica delle opinioni, evoluzione culturale); Dinamica dell'informazione (infosfera, sistemi di raccomandazione, disinformazione e camere ad eco, ecc.); Dinamica urbana (dal livello microscopico della mobilità al livello macroscopico della modellazione delle interazioni socio-economiche); Ecofisica e complessità economica; Reti neurali e intelligenza artificiale.
Prerequisiti
a) E’ indispensabile avere buone basi di fisica statistica, calcolo delle probabilità e di fisica dei sistemi dinamici. b) E’ importante avere buone conoscenze analitiche e computazionali. c) E’ utile avere nozioni di scienza dei dati e una forte propensione verso la modellizzazione teorica.
Testi di riferimento
I testi di riferimento ed il materiale didattico saranno indicati dai docenti durante il corso e riportati nella pagina web del corso.
Frequenza
La frequenza a tutte le lezioni è fortemente consigliata.
Modalità di esame
L’esame finale sarà composto da una prova orale stutturata in due fasi consecutive. (i) la presentazione di una tesina su un argomento avanzato scelto dallo studente e concordato con uno dei docenti di riferimento. (ii) una serie di domande aperte sugli argomenti fondanti del corso. Nella valutazione dell'esame la determinazione del voto finale tiene conto dei seguenti elementi: 1. Competenza sugli argomenti fondanti del corso: 60% 2. Preparazione ed esposizione della tesina: 40% Per superare l'esame occorre conseguire un voto non inferiore a 18/30. Per conseguire un punteggio pari a 30/30 e lode, lo studente deve invece dimostrare di aver acquisito una conoscenza eccellente di tutti gli argomenti trattati durante il corso, essendo in grado diraccordarli in modo logico e coerente, e di aver dimostrato iniziativa e capacità nell’elaborazione della tesina. Deve inoltre dimostrare autonomia di giudizio, iniziativa e capacità critica in generale.
Modalità di erogazione
Tutti i dettagli sono indicati nella pagina web del corso: https://sites.google.com/site/sistemicomplessisapienza/course-of-physics-of-complex-systems?authuser=0
FRANCESCA TRIA Scheda docente

Programmi - Frequenza - Esami

Programma
Il corso è diviso in due sezioni principali. La prima parte del corso (per circa 36 ore) è dedicata alle conoscenze e agli strumenti di base del bagaglio di un fisico della complessità. Ecco i principali argomenti trattati in questa sezione: Introduzione ai sistemi Complessi: Struttura gerarchica della natura, riduzionismo e complessità. Richiami sulla nozione di entropia e complessità in Termodinamica e Fisica statistica, Teoria dei Sistemi Dinamici, Teoria dell'Informazione e Teoria della Complessità Algoritmica. Richiami sulle leggi di scala e fenomeni critici. Distribuzioni a legge di potenza e modelli generativi. Auto-organizzazione critica e crescita frattale: modelli fisici di crescita frattale auto-organizzata. Reti complesse: proprietà topologiche dei grafi, matrice di adiacenza, distribuzioni, correlazioni. Networks Poissoniani e invarianti di scala. Clustering e comunità. Modelli di crescita di reti complesse. Cenni a reti complesse reali. La seconda parte (per circa 24 ore) è di approfondimento e sarà costituita da una serie di seminari avanzati su un certo numero di temi di punta della scienza dei sistemi complessi. Esempi di argomenti trattati includono, in maniera non esaustiva: Dinamiche sociali (ad esempio dinamiche di consenso in linguistica, dinamica delle opinoni, evoluzione culturale); Dinamiche di innovazione (modelli di complessità crescente e confronto con dati empirici di sistemi che mostrano innovazione); Dinamica dell'informazione (infosfera, sistemi di raccomandazione, misinformation e camere ad eco, ecc.); Dinamiche urbane (dal livello microscopico della mobilità al livello macroscopico della modellizzazione delle interazioni socio-economiche); Complessità economica.
Prerequisiti
a) E’ indispensabile avere buone basi di fisica statistica, calcolo delle probabilità e di fisica dei sistemi dinamici. b) E’ importante avere buone conoscenze analitiche e computazionali. c) E’ utile avere nozioni di scienza dei dati e una forte propensione verso la modellizzazione teorica.
Testi di riferimento
I testi di riferimento ed il materiale didattico saranno indicati dai docenti durante il corso e riportati nella pagina web del corso.
Frequenza
non obbligatoria ma altamente consigliata
Modalità di esame
L’esame finale sarà composto da una prova orale stutturata in due fasi consecutive. (i) la presentazione di una tesina su un argomento avanzato scelto dallo studente e concordato con uno dei docenti di riferimento. (ii) una serie di domande aperte sugli argomenti fondanti del corso. Nella valutazione dell'esame la determinazione del voto finale tiene conto dei seguenti elementi: 1. Competenza sugli argomenti fondanti del corso: 60% 2. Preparazione ed esposizione della tesina: 40% Per superare l'esame occorre conseguire un voto non inferiore a 18/30. Per conseguire un punteggio pari a 30/30 e lode, lo studente deve invece dimostrare di aver acquisito una conoscenza eccellente di tutti gli argomenti trattati durante il corso, essendo in grado diraccordarli in modo logico e coerente, e di aver dimostrato iniziativa e capacità nell’elaborazione della tesina. Deve inoltre dimostrare autonomia di giudizio, iniziativa e capacità critica in generale.
FRANCESCA TRIA Scheda docente

Programmi - Frequenza - Esami

Programma
Il corso è diviso in due sezioni principali. La prima parte del corso (per circa 36 ore) è dedicata alle conoscenze e agli strumenti di base del bagaglio di un fisico della complessità. Ecco i principali argomenti trattati in questa sezione: Introduzione ai sistemi Complessi: Struttura gerarchica della natura, riduzionismo e complessità. Richiami sulla nozione di entropia e complessità in Termodinamica e Fisica statistica, Teoria dei Sistemi Dinamici, Teoria dell'Informazione e Teoria della Complessità Algoritmica. Richiami sulle leggi di scala e fenomeni critici. Distribuzioni a legge di potenza e modelli generativi. Auto-organizzazione critica e crescita frattale: modelli fisici di crescita frattale auto-organizzata. Reti complesse: proprietà topologiche dei grafi, matrice di adiacenza, distribuzioni, correlazioni. Networks Poissoniani e invarianti di scala. Clustering e comunità. Modelli di crescita di reti complesse. Cenni a reti complesse reali. La seconda parte (per circa 24 ore) è di approfondimento e sarà costituita da una serie di seminari avanzati su un certo numero di temi di punta della scienza dei sistemi complessi. Esempi di argomenti trattati includono, in maniera non esaustiva: Dinamiche sociali (ad esempio dinamiche di consenso in linguistica, dinamica delle opinoni, evoluzione culturale); Dinamiche di innovazione (modelli di complessità crescente e confronto con dati empirici di sistemi che mostrano innovazione); Dinamica dell'informazione (infosfera, sistemi di raccomandazione, misinformation e camere ad eco, ecc.); Dinamiche urbane (dal livello microscopico della mobilità al livello macroscopico della modellizzazione delle interazioni socio-economiche); Complessità economica.
Prerequisiti
a) E’ indispensabile avere buone basi di fisica statistica, calcolo delle probabilità e di fisica dei sistemi dinamici. b) E’ importante avere buone conoscenze analitiche e computazionali. c) E’ utile avere nozioni di scienza dei dati e una forte propensione verso la modellizzazione teorica.
Testi di riferimento
I testi di riferimento ed il materiale didattico saranno indicati dai docenti durante il corso e riportati nella pagina web del corso.
Frequenza
non obbligatoria ma altamente consigliata
Modalità di esame
L’esame finale sarà composto da una prova orale stutturata in due fasi consecutive. (i) la presentazione di una tesina su un argomento avanzato scelto dallo studente e concordato con uno dei docenti di riferimento. (ii) una serie di domande aperte sugli argomenti fondanti del corso. Nella valutazione dell'esame la determinazione del voto finale tiene conto dei seguenti elementi: 1. Competenza sugli argomenti fondanti del corso: 60% 2. Preparazione ed esposizione della tesina: 40% Per superare l'esame occorre conseguire un voto non inferiore a 18/30. Per conseguire un punteggio pari a 30/30 e lode, lo studente deve invece dimostrare di aver acquisito una conoscenza eccellente di tutti gli argomenti trattati durante il corso, essendo in grado diraccordarli in modo logico e coerente, e di aver dimostrato iniziativa e capacità nell’elaborazione della tesina. Deve inoltre dimostrare autonomia di giudizio, iniziativa e capacità critica in generale.
  • Codice insegnamento10592568
  • Anno accademico2025/2026
  • CorsoPhysics - Fisica
  • CurriculumBiosistemi
  • Anno2º anno
  • Semestre1º semestre
  • SSDFIS/03
  • CFU6