ARTIFICIAL INTELLIGENCE IN BANKING AND FINANCE
Canale 1
VALENTINA LAGASIO
Scheda docente
Programmi - Frequenza - Esami
Programma
1. INTRODUCTION TO THE COURSE
• Risk management in banking • Financial risks
2. THE ROLE OF ARTIFICIAL INTELLIGENCE IN BANKING AND FINANCE
• Machine Learning, Deep Learning, and Data Science
• Applications and examples in Banking and Finance (case studies presentation)
3. INTRODUCTION TO PYTHON AND (FINANCIAL) DATA GATHERING
• Describing the main Python packages for finance • Describing the main sources of financial data
• Analyzing the different database structures
• Exploratory data analysis and Descriptive statistics
4. SUPERVISED LEARNING: OVERVIEW
• Regression (specific skills for ML applications) • Support Vector Machine
• K-Nearest Neighbors
• Linear Discriminant Analysis
• Classification and Regression Trees
5. MODEL PERFORMANCE
• Overfitting and Underfitting • Cross Validation
• Evaluation Metrics
6. SUPERVISED LEARNING: REGRESSION
• Linear Regression (specific skills for ML applications)
• Logistic Regression (specific skills for ML applications)
• Polynomial Regression (specific skills for ML applications)
• Applications and examples in Banking and Finance (i.e. determinants of bank default; asset price prediction; ...): coding exercises and academic papers discussion
7. SUPERVISED LEARNING: CLASSIFICATION
• Classification Predictive Modeling
• Binary Classification
• Multi-Label Classification
• Imbalanced Classification
• Applications and examples in Banking and Finance (i.e. loan defaults; fraud detection; ...): coding exercises and academic papers discussion
8. ARTIFICIAL NEURAL NETWORKS
• Architecture
• Training
• Hyperparameters
• Applications and examples in Banking and Finance (i.e. determinants of bank default; ...): coding exercises and academic papers discussion
9. UNSUPERVISED LEARNING: OVERVIEW
• Dimensionality reduction • Clustering
10. MODEL PERFORMANCE • Evaluation Metrics
11. UNSUPERVISED LEARNING: DIMENSIONALITY REDUCTION • Feature selection
• Feature extraction
• Applications and examples in Banking and Finance (i.e. risk management; ...): coding exercises and academic papers discussion
12. UNSUPERVISED LEARNING: CLUSTERING
• K-means
• Hierarchical clustering
• Applications and examples in Banking and Finance (i.e. bank business models identi- fication; ...): coding exercises and academic papers discussion
13. NATURAL LANGUAGE PROCESSING
• Topic modeling
• Sentiment analysis
• Applications and examples in Banking and Finance (i.e. trading strategies; crypto sentiment evaluation; ...): coding exercises and academic papers discussion
14. ETHICS AND TRANSPARENCY IN ARTIFICIAL INTELLIGENCE • (How to deal with) applications and examples
15. PROJECT PRESENTATIONS AND CONCLUSION OF THE COURSE
• Group presentations
• Wrapping up of the course
16. REAL WORLD EXPERIENCES
• Lessons from regulators (European Central Bank; Bank of Italy; ...) • Practitioners (Bankers; Financial or industrial companies; ...)
Prerequisiti
Non ci sono prerequisiti vincolanti. Tuttavia, gli studenti dovrebbero preferibilmente conoscere gli aspetti principali della gestione bancaria (ad esempio la gestione del rischio) e padroneggiare la statica di base per l'analisi dei dati finanziari.
Testi di riferimento
Tatsat, H., Puri, S., & Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance. O’Reilly Media.
Frequenza
Non obbligatoria
Modalità di esame
Sistema di valutazione
• Esame finale
– STUDENTI FREQUENTANTI
* Progetto di gruppo (con presentazione in aula)
* Esame scritto individuale
– STUDENTI NON FREQUENTANTI
* Esame scritto individuale
• Pesi
– STUDENTI FREQUENTANTI
* Class participation: 5/30
* Valutazione del progetto di gruppo: 15/30
* Esame scritto individuale: 13/30
– STUDENTI NON FREQUENTANTI
* Esame scritto individuale: 33/30
Modalità di erogazione
Lezioni frontali e esercitazioni
VALENTINA LAGASIO
Scheda docente
Programmi - Frequenza - Esami
Programma
1. INTRODUCTION TO THE COURSE
• Risk management in banking • Financial risks
2. THE ROLE OF ARTIFICIAL INTELLIGENCE IN BANKING AND FINANCE
• Machine Learning, Deep Learning, and Data Science
• Applications and examples in Banking and Finance (case studies presentation)
3. INTRODUCTION TO PYTHON AND (FINANCIAL) DATA GATHERING
• Describing the main Python packages for finance • Describing the main sources of financial data
• Analyzing the different database structures
• Exploratory data analysis and Descriptive statistics
4. SUPERVISED LEARNING: OVERVIEW
• Regression (specific skills for ML applications) • Support Vector Machine
• K-Nearest Neighbors
• Linear Discriminant Analysis
• Classification and Regression Trees
5. MODEL PERFORMANCE
• Overfitting and Underfitting • Cross Validation
• Evaluation Metrics
6. SUPERVISED LEARNING: REGRESSION
• Linear Regression (specific skills for ML applications)
• Logistic Regression (specific skills for ML applications)
• Polynomial Regression (specific skills for ML applications)
• Applications and examples in Banking and Finance (i.e. determinants of bank default; asset price prediction; ...): coding exercises and academic papers discussion
7. SUPERVISED LEARNING: CLASSIFICATION
• Classification Predictive Modeling
• Binary Classification
• Multi-Label Classification
• Imbalanced Classification
• Applications and examples in Banking and Finance (i.e. loan defaults; fraud detection; ...): coding exercises and academic papers discussion
8. ARTIFICIAL NEURAL NETWORKS
• Architecture
• Training
• Hyperparameters
• Applications and examples in Banking and Finance (i.e. determinants of bank default; ...): coding exercises and academic papers discussion
9. UNSUPERVISED LEARNING: OVERVIEW
• Dimensionality reduction • Clustering
10. MODEL PERFORMANCE • Evaluation Metrics
11. UNSUPERVISED LEARNING: DIMENSIONALITY REDUCTION • Feature selection
• Feature extraction
• Applications and examples in Banking and Finance (i.e. risk management; ...): coding exercises and academic papers discussion
12. UNSUPERVISED LEARNING: CLUSTERING
• K-means
• Hierarchical clustering
• Applications and examples in Banking and Finance (i.e. bank business models identi- fication; ...): coding exercises and academic papers discussion
13. NATURAL LANGUAGE PROCESSING
• Topic modeling
• Sentiment analysis
• Applications and examples in Banking and Finance (i.e. trading strategies; crypto sentiment evaluation; ...): coding exercises and academic papers discussion
14. ETHICS AND TRANSPARENCY IN ARTIFICIAL INTELLIGENCE • (How to deal with) applications and examples
15. PROJECT PRESENTATIONS AND CONCLUSION OF THE COURSE
• Group presentations
• Wrapping up of the course
16. REAL WORLD EXPERIENCES
• Lessons from regulators (European Central Bank; Bank of Italy; ...) • Practitioners (Bankers; Financial or industrial companies; ...)
Prerequisiti
Non ci sono prerequisiti vincolanti. Tuttavia, gli studenti dovrebbero preferibilmente conoscere gli aspetti principali della gestione bancaria (ad esempio la gestione del rischio) e padroneggiare la statica di base per l'analisi dei dati finanziari.
Testi di riferimento
Tatsat, H., Puri, S., & Lookabaugh, B. (2020). Machine Learning and Data Science Blueprints for Finance. O’Reilly Media.
Frequenza
Non obbligatoria
Modalità di esame
Sistema di valutazione
• Esame finale
– STUDENTI FREQUENTANTI
* Progetto di gruppo (con presentazione in aula)
* Esame scritto individuale
– STUDENTI NON FREQUENTANTI
* Esame scritto individuale
• Pesi
– STUDENTI FREQUENTANTI
* Class participation: 5/30
* Valutazione del progetto di gruppo: 15/30
* Esame scritto individuale: 13/30
– STUDENTI NON FREQUENTANTI
* Esame scritto individuale: 33/30
Modalità di erogazione
Lezioni frontali e esercitazioni
- Codice insegnamento10607268
- Anno accademico2024/2025
- CorsoFinanza e assicurazioni - Finance and insurance
- CurriculumFinancial risk and data analysis - in lingua inglese
- Anno1º anno
- Semestre2º semestre
- SSDSECS-P/11
- CFU6
- Ambito disciplinareAziendale